" { APACHE@®IN

NORTH AMERICA

OCTOBER 3 - 6,2022

NEW ORLEANS
LOUISIANA y

WWW.APACHECON.COM

mod_wasm /"m

Bringing WebAssembly to Apache

Daniel Lépez Ridruejo / Jesus Gonzalez Marti
Office of the CTO | Wasm Labs @ VMware

https://wasmlabs.dev

October 3rd, 2022

https://wasmlabs.dev/

About the Speakers
Wasm Labs | Office of the CTO | VMware

Sr. Director @ Wasm Labs (VMware)
Bitnami CEO & Co-Founder (acquired by VMware)

Apache Software Foundation - Emeritus Member

Daniel Lopez

Engineer @ Wasm Labs (VMware)

’
Co-Founder & CTO at Smart Home startup ~é
Al/ML & NLP at Intel b '

Jesus Gonzalez
vmware

Agenda

What’'s WebAssembly?
Introducing mod_wasm
mod_wasm in action!
Roadmap

Q&A

vmware

What’s WebAssembly?

vmware

What is WebAssembly (aka Wasm)

Neither web, nor assembly!

WebAssembly is an open standard that defines a
portable binary format for executable programs.

WebAssembly is native-supported in all major browsers

vmware

WebAssembly in the Browser

Source code 2 Wasm

—

V8

Wasm-bindgen
Wasm
Runtime Js

Wasm binary

vmware 6

What you can do with WebAssembly in the browser...

Figma

Adobe & ¥
@Adobe

Yep, you heard that right. @Photoshop is coming the to
Web, so that you can access projects anywhere. In
public beta now. #AdobeMAX

vmware

WordPress entirely in the Browser
First work at WasmLabs

Running WordPress in the Browser

By g Jesus Gonzélez At 2022/ 07 15 mins reading

WordPress + WebAssembly Sample Page

https://wordpress.wasmlabs.dev/

* PHP interpreted ported to Wasm (including SQLite)
* Very useful for tutorials and instructions manuals

WebAssembly Resources

Hi everyone!

This is a short list of different WebAssembly resources we found
very interesting. Hope you enjoy them!

July 12, 2022

https://wordpress.wasmlabs.dev/

WebAssembly Iin the Server

An historic tweet from March 2019

“If WASM+WASI existed in 2008, we wouldn't have g
needed to created Docker. That's how important it is.
Webassembly on the server is the future of computing.”

Solomon Hykes, creator of Docker

vmware

WebAssembly Iin the Server
Wasm+WASI

clccll
® L

Source code > Wasm

Wasm binary

¢

-:‘3.* T
’ \ {ﬁ;ﬂ Interpreter > Wasm
i

vmware

ke

WASI, WASI-NN, Proxy-Wasm

Wasm Runtime

WebAssembly Top Features

Vel

& Open M Portable

Adopted by the entire industry Most CPUs (x86, ARM, RISC-V) , most OS including

‘f F Android, ESXi, non-Posix
& Efficient
Native-like speed, JIT/AOT, no cold-starts

Minimal memory footprint, CPU requirements

@ Secure ,
®: Polyglot
Memory safe, sandboxed, capabilities-based model,
better supply chain security Support for 40+ languages, modern toolchains

In many respects, WebAssembly aims to fulfill Java’s original promise, but with the hindsight of
20+ years and unanimous industry backing.

vmware .

Introducing mod_ wasm &4

vmware

Architecture Overview
mod_wasm.so + libwasm_runtime.so + Wasmtime

mod_wasm.so

Apache HTTP Server - Apache extension module.
(httpd)

- New directives for httpd.conf to configure the Wasm context.

dlopen) - Implements post_config() and content_handler() hooks.

mod_wasm.So
Project dynamic link libwasm_runtime.so

mod_wasm - Very high-level library for managing Wasm modules.

libwasm_runtime.so
- |t offers a C-API to mod_wasm.so.

crate dependency

Wasmtime Wasmtime

- WebAssembly runtime from the Bytecode Alliance.

vmware 1

. . <
Mmod wasm In action! &«

vmware

Demo #1: PHP running as Wasm in the Server

http://192.168.64.2:8080/phpinfo.php

® ® @ PHP7.3.33 - phpinfo()

4 b C (R

X

+

A No es seguro | 192.168.64.2:8080/phpinfo.php /N

@ A * 0D

System wasi (none) 0.0.0 0.0.0 wasm32

Build Date Sep 23 2022 14:09:21

Configure Command "Jeonfigure' '--host=wasm32-wasi' 'host_alias=wasm32-musl-wasi' --disable-libxml' -disable-dom' '--without-iconv'
"--without-openssl' --disable-simplexml' -disable-xml' '--disable-xmireader' --disable-xmlwriter' '--without-pear' '--
disable-phar' -disable-opcache' -disable-zend-signals' --without-pcre-jit' '--with-sqlite3' --enable-pdo' --with-pdo-
sqlite’ -target=wasm32-wasi' target_alias=wasm32-musl-wasi'

Server API CGlI/FastCGI

Virtual Directory Support disabled

Configuration File (php.ini) Path lusrflocal/lib

Loaded Configuration File (none)

Scan this dir for additional .ini files (none)

Additional .ini files parsed (none)

PHP API 20180731

PHP Extension 20180731

Zend Extension 320180731

Zend Extension Build API320180731,NTS

PHP Extension Build API20180731,NTS

Debug Build no

Thread Safety disabled

Zend Signal Handling

vmware

disabled

Note System is wasi on wasm32.

Environment variables

Demo #2: PrettyFy WebApp
CGIl Vs. WebAssembly

“PrettyFy” is a one-script, Python-based WebApp:

Reads contents from a previously uploaded file
Outputs a full color prettified code in HTML
Two running environments:

1) CGl
The prettyfy.py script is served as CGl.

2) WebAssembly

It will use the same unmodified Python script.

Python interpreter installed in the OS. The Python interpreter will be compiled to Wasm

and executed within a Wasm engine.

*In both scenarios, HTTP request headers and URL parameters will be passed as environment variables.

vmware 10

Demo #2: PrettyFy WebApp
CGl

http://192.168.64.2:8080/cgi-bin/prettyfy.py?file=search_word_count.py

®O@® @ prettyry x +

m <

d C R A Noesseguro| 192.168.64.2:8080/cgi-bin/pret... % | @ A » B

Apache, CGl and Python are working as expected.

- . o
= PrettyFy « Note Python’s sys.platform value is linux.

Platform
sys.platform = linux
Available files at 'uploads/"
search_word_count.py
Try opening file: 'uploads/search_word_count.py'

import os, sys

FILE = os.getenv('HTTP_FILE')
WORD = os.getenv('HTTP_WORD")

if FILE == None or WORD == None:
print("ERROR! Set FILE and WORD headers!", file=sys.stderr)

sys.exit() .

- What if we try a Path Traversal attack? ﬂ
file = open(FILE, "r")

except Exception as e:
print(f"ERROR! Couldn't open file {FILE}! {e}", file=sys.stderr)

vmware

Demo #2: PrettyFy WebApp
CGIl + Path Traversal Attack

http://192.168.64.2:8080/cgi-bin/prettyfy.py?file=../../conf/httpd.conf

®O0® @ prettyry X + v

d C [N A Noesseguro| 192.168.64.2:8080/cgi-bi.. 3 % | @ A » B

- A simple Path Traversal attack was successful @

™ prettyFy <. , o Q_f)
- PrettyFy didn’t meet OWASP guidelines &

Platform

sys.platform = linux

Available files at 'uploads/'

P ——— CONCLUSION:

Try opening file: 'uploads/../..[conf/httpd.conf' Do not trust 3 rd pa rty software!!

#

This is the main Apache HTTP server configuration file. It contains the
configuration directives that give the server its instructions.

See <URL:http://httpd.apache.org/docs/2.4/> for detailed information.

In particular, see

<URL:http://httpd.apache.org/docs/2.4/mod/directives.html>

for a discussion of each configuration directive.

#

Do NOT simply read the instructions in here without understanding

what they do. They're here only as hints or reminders. If you are unsure
consult the online docs. You have been warned.

#

Conflguratlon and logfile names: If the fllenames you spec1fy for many
#_of tbo ooy oot ool £id oo boodo ouddb M/n [oo Hd oo / PR W EE 1o L S P

vimwa re 19
o

Demo #2: PrettyFy WebApp
OWASP 2021 - Top 10

#1 — Broken Access Control

2017 2021

A01:2021-Broken Access Control
A02:2021-Cryptographic Failures

= A03:2021-Injection

[(New) A04:2021-Insecure Design

A05:2021-Security Misconfiguration
A06:2021-Vulnerable and Outdated Components
A07:2021-ldentification and Authentication Failures

A01:2017-Injection
A02:2017-Broken Authentication
A03:2017-Sensitive Data Exposure
A04:2017-XML External Entities (XXE)
A05:2017-Broken Access Control
A06:2017-Security Misconfiguration
A07:2017-Cross-Site Scripting (XSS)

A08:2017-Insecure Deserialization / (New) A08:2021-Software and Data Integrity Failures
A09:2017-Using Components with Known Vulnerabilities / A09:2021-Security Logging and Monitoring Failures*
A10:2017-Insufficient Logging & Monitoring (New) A10:2021-Server-Side Request Forgery (SSRF)*

* From the Survey

» Least privilege (deny by default)

* Bypassing access control checks by modifying URL or API requests
 Accessing APl with missing access control

« Elevation of privilege

vmware

https://owasp.org/Top10

Demo #2: PrettyFy WebApp

Wasm

http://192.168.64.2:8080/wasm—module?file=search_word_count.py

[NON J & PrettyFy X +

m <

4 (& 0 A Noesseguro| 192.168.64.2:8080/wasm-.. 3 % | @ A » B

™ prettyFy < Executing the script within the Wasm environment.

Running the same unmodified script:

Platform
- Note sys.platform now indicates wasi.

sys.platform = wasi
Available files at 'uploads/'

search_word_count.py

Try opening file: 'uploads/search_word_count.py'

import os, sys

FILE = os.getenv('HTTP_FILE')
WORD = os.getenv('HTTP_WORD"')

if FILE == None or WORD == None:
print("ERROR! Set FILE and WORD headers!", file=sys.stderr)

sys.exit()

try:
file = open(FILE, "r")

except Exception as e:
print(f"ERROR! Couldn't open file {FILE}! {e}", file=sys.stderr)

vmware

20

Demo #2: PrettyFy WebApp

Wasm + Path Traversal Attack

http://192.168.64.2:8080/wasm—-module?file= =../../conf/httpd.conf

®O0@® @ prettyry X + v
d C N A Noesseguro| 192.168.64.2:8080/wasm-module?fi.. | & A » B = Path Traversal attaCk didn’t Work! 3
™ PrettyFy The Wasm Capabilities Model prevented the
Dlats code to get out from its sandboxed context.
atrorm

sys.platform = wasi

Available files at 'uploads/'

search_word_count.py CO N C LU S I O N :

Try opening file: 'uploads]../../conf/httpd.conf' . .
mod_wasm allows running untrusted code in a

ERROR! [Errno 63] Operation not permitted: 'uploads|../../conf/httpd.conf'
peratonnet ’ ’ secure environment in Apache (without containers!)

vmware

Demo #2: PrettyFy WebApp
What just happened?

v We already knew that CGl is not secure enough, especially to run untrusted code.

v Executing the entire Python interpreter in WebAssembly provided a secure
environment to run:

- Untrusted code.

« Unmodified applications.

- And with no heavy image containers needed!

v The Wasm capabilities model can limit the access to the resources:

« No capabilities enabled by default.

« Execution is allowed/denied at syscall level.

- Capabilities can be updated per request.

“A happy and smiling startup CTO, digital art, cartoon style”

vmware by DALLE

Behind the Scenes &«

vmware

Directives
Setting up httpd.conf for PrettyFy demo

LoadModule wasm_module modules/mod_wasm.so

SetHandler wasm-handler

WasmRoot /var /www/wasm_modules

WasmModule python3.11.wasm

WasmMapDir /python /var/www/python

WasmArg /python/prettyfy.py

WasmEnv PYTHONHOME /python/wasi-python/lib/python3.11
WasmEnv PYTHONPATH /python/wasi-python/lib/python3.11
WasmEnableCGI On

vmware

gu—

Apache’s mod_wasm new directives:
WasmRoot
WasmModule
WasmDir
WasmMapDir
WasmArg
WasmEnv

WasmEnableCGI

24

PrettyFy Source Code
prettyfy.py

a

Interpreter directive

0s, sys, cgi
pygments highlight

A

Python imports

print("Content-Type: text/html")
prlnt(n n)

HTTP “Content-Type” header

a

print("<!DOCTYPE html><HTML><HEAD>")

a

HTML Opening Markups

form cgi.FieldStorage()
path = "uploads/"
file = form.getvalue("file")
file:
filepath=path+file
print('<h2>Try opening file: \'' + filepath + '\'</h2>")

A

CGl Management

a

Getting URL Parameters

a

Dangerous code!

file = open(filepath, 'r')
Exception e:
print("ERROR! " + str(e))
file:
code = file.read()
result = highlight(code, lexer, formatter)
print(result)

HTML Closing Markups < print("</div></main></BODY></HTML>")

vmware 25

Workflow

Wasm initialization and request execution

Apache HTTP Server

Apache
-

Boot Up

Per
Request

(httpd)

on each WasmXXX directive at httpd.conf

mod__wasm.so

wasm_config_set_xxx()

v

on ap_hook_post_config()

v

\ 4

wasm_runtime_init_module()

on ap_hook_handler()

\ 4

v

wasm_runtime_run_module()

libwasm__runtime.so

Module: : from_file()

Clear stdout

ap_rprintf(r, %s”, module_response)

\ 4

Return stdout

3 buffer

Build WASI context from Request

v

Instantiate Wasm Module

v

Execute

v

Capture stdout buffer

v

A

a

S

vmware

Loading

Wasm
Module

Executing

Wasm
Module

26

Roadmap &

vmware

Roadmap

Today:
- mod_wasm is already available in GitHub!

https://github.com/vmware-labs/mod-wasm

Short-term:

« Interact with the community for adoption and new features

- Contribute Upstream

Mid-term:
« Implement performance improvements
« Support for more than one Wasm module and entry points

- WebAssembly Multi-engine support

vmware 2

https://github.com/vmware-labs/mod-wasm

Thanks! &

O https://github.com/vmware—-labs/mod_wasm

& https://wasmlabs.dev
[evmoesn

vmware

