
Large Scale Migration to Apache 
Parquet in Uber

Huicheng Song, Xinli Shang



Speaker Intro
● Huicheng Song

○ Staff Software Engineer

● Xinli Shang
○ Apache Parquet PMC Chair 
○ Manager at Uber Data 



Agenda 
● Uber data architecture 

● Apache Parquet @ Uber

● Unification of big data file format 

● Challenges and solutions

● Current status and futures 



Uber Data Architecture 

Ingestion

(Parquet, Hudi,
Hoover)

Online Storage

Events

Telemetry

 Feeds

Kafka Data 
Lake

     Compute Fabric 

Real-Time Analytics

Data Platform & Tools

Batch Analytics

Stream Processing 
(Flink, AthenaX) Complex Processing

(Spark)

Data Workflow
(Piper, uWorc)

BI Tools 
(QueryBuilder, Dashbuilder, Summary)

Metadata Platform
(Databook, Quality, Lineage)

Interactive
(Presto)

ETL
(Hive)

Dashboards Reports Analysis Machine Learning

In-memory (Pinot)

storage

Security

Global Data 
Warehouse



Apache Parquet Intro
● Widely used Big Data File Format 

● Designed for efficiency, security & interoperability



Apache Parquet @ Uber Data Lake
● Most data is Parquet format while a small portion of ORC, Text…

● Security initiatives
○ Column level encryption 

○ Cell level encryption 

● Efficiency 
○ Migration to ZSTD 

○ Column Pruning to save storage  



Challenges to solve
● Data safety: data + metadata

● Scale: 20% of 100k tables

● Zero downtime

● ETL pipeline diverse DDL/DML/replication



Migration story V1

● High-level API based
○ Data / metadata loss

○ Hard to fix data issues: e.g. null map keys

○ ETL job issues: slow / OOM

● Pre-gen ETL pipelines + "crowdsourcing"
○ Data team manage infra; owners manage pipelines

○ Low partner engagement

○ Pipeline errors after migration, e.g. on swap DML

create table x_staging like x

insert into x_staging partition(datestr)
select * from x

alter table x rename as x_bak
alter table x_staging as x



Migration story V2
● File based rewriter

● Migration job management

● Mix format support

● Data driven ETL pipeline migration



File based rewriter

● Problems to solve
○ Safety / scale

● Rewriter based on Spark data source

● Rewrite => validate => swap

● Problems solved
○ Legacy ORC Schema

○ Spark timestamp resolution

○ Hash of Map type

○ Mitigate Spark HMS limitation

● Known issues
○ String order change

○ ORC +0/-0 bug



Rewriter job management
● Single Spark job issues

○ Slow with large tables
○ Higher chance of failure
○ Debuggability suffer

● Concurrent jobs among partitions
○ Naive approach: fix number of partitions per job
○ Final solution: split on partition count and file size

● Core# per job tuning: use smaller clusters
○ Reduce waiting time

● Scheduler: managing 100s jobs
○ prepare: turn-on mix-format, permissions etc.
○ rewrite: launch/poll/retry
○ clean-up: turn-off mix-format



Mixed format support

● Goal
○ incremental migration
○ zero-downtime for readers
○ Limited scope: per-table flag; only during migration

● Hive change
○ Schema-evolution on Parquet / ORC
○ Fix Serde issue causing NULL values

● Spark change
○ Force HadoopRDD over native data source

● Known issues
○ transient HMS / file format mismatch



ETL pipeline migration
● Figure out what / where / when

○ Pipeline update based on DDL / DML patterns

○ Select the running DC

○ Find the safe run time

● Data driven analysis
○ HMS / Hive / Spark audit logs

○ Job API for running state query



● Non-partition vs partitioned tables
● DDL patterns

○ create-table-if-not-exists: alter prod table
○ drop-n-create: update DDL

● DML patterns
○ insert-(overwrite): alter table format
○ swap locations: alter staging table format
○ dual-table sharing locations: data update on main table; alter format on both

● Data driven analysis
○ HMS / Hive audit logs
○ Manual analysis for Spark / Presto jobs

What to run



Where to run
● Two DCs

● ETL pipeline mode
○ one-dc

○ primary-dc

○ secondary-dc

○ both-dc

● Job API to track ETL location

● Replication handling

Replication Solution

Double-single 
compute

No replication

Hive-Sync Trigger Hive Metastore events

Data-Platinum Explicit invoking RPC services



When to run
● Reduce migration and ETL conflict

● Use Job API to find run intervals

● Challenging cases
○ Job state may be unreliable

○ Non stopping jobs

○ Tables used in multiple jobs



Future work

● Full automation: from 1k -> 20k

● Optimize Spark app efficiency
○ Better error handling

○ Adapt to different file size / count



Learnings
● Flexible systems are hard to migrate

● Complexities hide in the details

● Audit logs across infra are valuable

● Make migration support a first class feature



Thanks


