/APACH ECON

Large Scale Migration to Apache
Parquet in Uber

= Huicheng Song, Xinli Shang

Speaker Intro

e Huicheng Song

o Staff Software Engineer

e Xinli Shang
o Apache Parquet PMC Chair
o Manager at Uber Data

Agenda

Uber data architecture

Apache Parquet @ Uber
Unification of big data file format
Challenges and solutions

Current status and futures

Uber Data Architecture

Online Storage

Events

Telemetry

Feeds

\LOEJ

L&,

«
Dashboards Reports Analysis
Bl Tools Data Workflow
(QueryBuilder, Dashbuilder, Summary) (Piper, uworc)
Real-Time Analytics
Stream Processing .
(Flink, AthenaX) Interactive

(Presto)

In-memory (Pinot)

Compute Fabric

Ingestion
Kafka - " Data t
arquet, Hudi, storage
Hoover) Lake 9

Machine Learning

Data Platform & Tools

Metadata Platform
(Databook, Quality, Lineage)

Batch Analytics
ETL Complex Processing
(Hive) (Spark)
Security

Global Data
Warehouse

Apache Parquet Intro

e Widely used Big Data File Format

e Designed for efficiency, security & interoperability

Apache Parquet @ Uber Data Lake

e Most data is Parquet format while a small portion of ORC, Text...

e Security initiatives

o Column level encryption

o Cell level encryption
e Efficiency
o Migration to ZSTD

o Column Pruning to save storage

Challenges to solve

o Data safety: data + metadata
e Scale: 20% of 100k tables
e Zero downtime

e ETL pipeline diverse DDL/DML/replication

Migration story V1

High-level APl based

O

O

O

Data / metadata loss
Hard to fix data issues: e.g. null map keys
ETL job issues: slow / OOM

Pre-gen ETL pipelines + "crowdsourcing"

O

O

O

Data team manage infra; owners manage pipelines
Low partner engagement

Pipeline errors after migration, e.g. on swap DML

create table x_staging like x

insert into x_staging partition(datestr)
select * from x

alter table x rename as x_bak
alter table x_staging as x

Migration story V2

e File based rewriter
e Migration job management
e Mix format support

e Data driven ETL pipeline migration

File based rewriter

e Problems to solve
o Safety/scale

e Rewriter based on Spark data source
e Rewrite => validate => swap

e Problems solved
o Legacy ORC Schema
o Spark timestamp resolution
o Hash of Map type
o Mitigate Spark HMS limitation
e Known issues

o String order change
o ORC+0/-0 bug

InternalRow

Spark Native Data Sources

Rewriter job management

e Single Spark job issues
o Slow with large tables
o Higher chance of failure
o Debuggability suffer
e Concurrent jobs among partitions
o Naive approach: fix number of partitions per job
o Final solution: split on partition count and file size
e Core# perjob tuning: use smaller clusters
o Reduce waiting time
e Scheduler: managing 100s jobs

o prepare: turn-on mix-format, permissions etc.
o rewrite: launch/poll/retry
o clean-up: turn-off mix-format

Mixed format support

e Goal
o incremental migration
o zero-downtime for readers
o Limited scope: per-table flag; only during migration
e Hive change
o Schema-evolution on Parquet / ORC
o Fix Serde issue causing NULL values
e Spark change
o Force HadoopRDD over native data source
e Known issues

o transient HMS / file format mismatch

ETL pipeline migration

e Figure out what/where / when

o Pipeline update based on DDL / DML patterns
o Select the running DC

o Find the safe run time
e Data driven analysis
o HMS / Hive / Spark audit logs

o Job API for running state query

What to run

e Non-partition vs partitioned tables
e DDL patterns

o create-table-if-not-exists: alter prod table
o drop-n-create: update DDL
e DML patterns

o insert-(overwrite): alter table format

o swap locations: alter staging table format

o dual-table sharing locations: data update on main table; alter format on both
e Data driven analysis

o HMS/ Hive audit logs
o Manual analysis for Spark / Presto jobs

Where to run

Two DCs
ETL pipeline mode

o one-dc
o primary-dc
o secondary-dc

o both-dc
Job API to track ETL location

Replication handling

Replication

Solution

Double-single
compute

No replication

Hive-Sync

Trigger Hive Metastore events

Data-Platinum

Explicit invoking RPC services

When to run

e Reduce migration and ETL conflict
e UseJob API to find run intervals

e Challenging cases

o Job state may be unreliable
o Non stopping jobs

o Tables used in multiple jobs

Showing last 3 runs | Prev 3 runs

Future work

e Full automation: from 1k -> 20k
e Optimize Spark app efficiency

o Better error handling

o Adapt to different file size / count

Learnings

e Flexible systems are hard to migrate
e Complexities hide in the details
e Audit logs across infra are valuable

e Make migration support a first class feature

Thanks

