
An open standard for
data lineage

Ross Turk (ross.turk@astronomer.io)



Why now?





a data pipeline a harmonious data ecosystem



SaaS pipeline 
components

Mature open 
source platforms

Self-service 
data culture

Elastic cloud 
infrastructure

What else changed?



The defining dilemma

What kind of pipeline 
should I build?

How will I go about 
building it?

How many pipelines are 
currently running?

How can we learn about 
all of them?

How can we know what 
goes on inside them?



Building a healthy data ecosystem

7

Team A

Team C

Team B



8

What is the data source?
What is the schema?
Who is the owner?
How often is it updated?
Where does it come from?
Who is using it?
What has changed?

DATA

Ecosystems form around
shared understanding



What is data 
lineage?



What is data lineage?

10

Data lineage contains what 
we need to know to solve our 
most complicated problems.

● Producers & consumers of 
each dataset

● Inputs and outputs of 
each job



That’s it 👍
Just know everything, right?



Verifying compliance



Optimizing data operations



Establishing context & language



OMG the possibilities are endless

15

Dependency tracing
Root cause identification
Issue prioritization
Impact mapping
Precision backfills
Anomaly detection
Change management
Historical analysis
Automated audits



Ok, sounds great. 
So how?



The best time to collect metadata

17

…or you can capture it 
when the image is 
originally created!

You can try to infer the 
date and location of an 
image after the fact…

rocks

26m until 
sunset

haze



Comparing 
approaches

{ }



Observe the pipeline

Integrate with data 
orchestration systems

As jobs run, observe the 
way they affect data

Report to a lineage 
metadata repository

..

..

..

..

..

DATA LINEAGE REPOSITORY



Process query / activity logs

Integrate with data 
stores and warehouses

Regularly process query 
logs to trace lineage

Report to a lineage 
metadata repository

..

POLL

..

POLL

..

POLL

..

POLL

..

POLL

DATA LINEAGE REPOSITORY



Analyze source code

..

CRAWL

..

CRAWL

DATA LINEAGE REPOSITORY

..

CRAWL

Integrate with source 
code repositories

Look for queries and 
parse them for lineage

Report to a lineage 
metadata repository

{ } { } { }

PARSE PARSE PARSE



It’s a patchwork



Non-malicious (yet common) lineage lies

Fully-automated

Real-time

End-to-end 360° visibility

Easy AI/ML enhanced



24

To define an open standard 
for the collection of lineage 
metadata from pipelines
as they are running.

OpenLineage
Mission



Stone Soup, a fable about community



Graph DB

Backend

Producers

OpenLineage

Kafka topic

HTTP
client

Consumers

Kafka
client

GraphDB 
client

Kafka
client

Where OpenLineage potentially fits

26

Kafka topic



Before OpenLineage

27

Analysis Tools
Schedulers Warehouses

SQL Engines



With OpenLineage

28

Analysis Tools
Schedulers Warehouses

SQL Engines



How does 
OpenLineage 

work?



The OpenLineage Stack

30

Lineage Repository
(marquez)

User Interface
(marquez-ui)

Metadata Collection API
(openlineage)

Query API
(marquez-api)

openlineage-airflow

Airflow

openlineage-spark

Spark

openlineage-dbt

dbt



runID
eventType: START

event time
producer

input datasets

runID
eventType: ABORT

event time
producer

runID
eventType: FAIL

event time
producer

runID
eventType: COMPLETE

event time
producer

output datasets

31

Lifecycle of a job run

START

ABORT

FAIL

COMPLETE



Data model

32

Built around core entities: 
Datasets, Jobs, and Runs

Defined as a JSON 
Schema spec

Consistent naming for:
Jobs (scheduler.job.task)
Datasets (instance.schema.table)

transition
transition time

Run State Update

run uuid

Run

job id
(name based)

Job

dataset id
(name based)

Dataset

Run Facet

Job Facet

Dataset 
Facet

run

job

inputs / 
outputs



Facet examples

Dataset:
● Stats
● Schema
● Version

Job:
● Source code
● Dependencies
● Source control
● Query plan

Run:
● Scheduled time
● Batch ID
● Query profile
● Params

33



Lineage is built on correlations

1. Observe 2. Observe 4. Observe 6. Observe

3. Correlate 5. Correlate 7. Correlate

Dataset names are used to stitch together observations of job runs into a lineage graph.



35

Naming conventions

host + database + table
bucket + path

host + port + path
project + dataset + table

postgres://db.foo.com/metrics.salesorders
s3://sales-metrics/orders.csv

hdfs://stg.foo.com:salesorders.csv
bigquery:metrics.sales.orders

namespace + name
namespace + project + name

staging.load_orders_from_csv
prod.orders_etl.count_orders

Client-provided UUID 1c0386aa-0979-41e3-9861-3a330623effa

Formulae Examples

Runs

Datasets

Jobs



The snowball effect



OpenLineage Integrations

Metadata producers Metadata consumers



Marquez: open source metadata



Checking out the Marquez project



Starting up Marquez



About the Marquez start script

docker/up.sh --seed

Load the database with seed data
After starting Marquez, simulate a series of lineage events for a fictional food delivery service 
pipeline. Good for exploring the Marquez UI + the OpenLineage data model and API. 

docker/up.sh --detach

Run in detached mode
This will cause everything to run in the background (cool!) but also it won’t show logs (aww!) 

docker/up.sh --build

Build from source
Build everything, instead of grabbing the latest images from Docker Hub. For development.





43

Starting a job run

Provide sample JSON in the 
workshop repo



44

Completing a job run



45

Example: 
viewing a 

job run



Using the 
Python client



Thanks :)


