
Living and Breathing the 
Apache Way

Contributing upstream with competitors, customers, and 
investors breathing down your neck

By Aleksander Vidakovic



Intro

We all know that Fineract as a mission-critical core banking system provides a difficult balance to 
strike when rapidly building a differentiated product on top of an open source project. While challenging to 
balance the need for secrecy and time to market for one’s solution versus the transparency and 
contribution to the open source project, when upstream contribution is done right it unlocks enormous 
economic value for not just you the innovator but the entire ecosystem as a whole.

This session will explore at a practical level the culture, processes, and standards that need to be in 
place at both an org level and a community level to ensure that individuals can effectively contribute to 
upstream open source codebase while efficiently maintaining their downstream solution. We know that 
putting into practice the Apache Way can be difficult and will share our firsthand experiences so others in 
the community can do the same and reap the economic benefits both internally as well as externally 
across the entire community.



Who’s working with Fineract’s Source Code

Audience:

- Fineract Committers
- Freelancers
- Commercial integrators
- Larger companies with own development resources
- Small companies
- DevOps people who deploy Fineract as-is, no source changes
- … a combination of all of the above

… with different requirements:

- New users that need help to set up their projects
- Long-time users that might be stuck with a very old version
- … with preferences for more stable production releases
- … or who want the latest and greatest and accept a certain risk that things might break



Where we are… 

- Monolithic codebase
- No modules, libraries on Maven Central
- Need to fork upstream Git repository for private customizations
- Infrequent releases (once per year)
- No way to fully/partially replace existing business logic without refactoring 

(modules, “auto-configuration”)
- Good package structure, but not always following best practices for clean 

architecture
- Too many dependencies between business logic and API layer
- Two database query technologies (plain SQL in strings, JPA/OQL)
- Handcrafted SQL database independence tools (MySQL, PostgreSQL)
- This worked pretty well so far…





Resulting Anti-Patterns

- Create a fork based on the current develop branch, to get all recent fixes as 
soon as possible downstream risks downstream production instability

- Customization of original upstream business logic (“Open Heart Surgery”) 
risks Git conflicts when synchronizing downstream with latest changes from 
upstream

- No clear separation between private customizations (aka “secret sauce”) 
and generally useful fixes/improvements effectively slows down upstream 
development

- Waiting too long to synchronize downstream with upstream changes 
effectively risks a downstream hard fork



Where we are heading…

- Multiple major (feature-)releases per year
- Hotfix/maintenance releases whenever necessary (security, bugs; field test with Manoj and 

a large company)
- Maintenance support for the latest two minor releases
- In discussion: long term support
- Recommend to new users to base their forks on a release tag
- Proper separation of architectural layers (especially proper use of DTOs, JSON 

de-/serialization)
- Modularization will help in the future to avoid forks altogether
- Standardized way to fully/partially replace existing business logic (“default 

implementations”) with custom logic
- Recommendations how to set up projects (especially features that don’t exist upstream)
- Avoid SQL string “blobs” in the persistence layer (QueryDSL, JOOQ)
- Performance improvements in JPA by keeping up with latest standards (EclipseLink, soon 

version 3.x)





Howto: Downstream Fork (recommended)

- EVERY downstream fork is based on a supported release tag
- NEVER follow the upstream develop branch in your downstream fork; things can 

break!
- If the latest release is 1.8.0 then a partner can choose between 1.8.0 and 1.7.0 (last 

two minor releases are supported)
- Hotfixes (e. g. 1.7.2) supercede the last previous releases (e. g. 1.7.0 or 1.7.1)
- Create your own main development branch downstream, e. g. “acme-develop” 

based on release tag 1.7.0 (“git checkout -b acme-develop 1.7.0”)
- If a hotfix becomes available for your fork then it is recommended to upgrade as 

soon as possible (within days? a week?)
- Important: pay attention to upstream development and releases; avoid getting stuck 

with a version that is EOL



Git Commands: Downstream Fork (recommended)

- Create a for from upstream Fineract in your Github organization via Github UI
- git clone git@github.com:acme/fineract.git && cd fineract
- git remote add upstream git@github.com:apache/fineract
- git fetch upstream && git checkout develop && git merge upstream/develop
- git checkout -b acme-develop 1.7.0
- Set your downstream main branch in Github settings to “acme-develop”
- Continue developing on “acme-develop”
- When a new release (e. g. 1.8.0) appears upstream…
- git fetch upstream && git checkout develop && git merge upstream/develop
- git checkout -b upgrade-1.8.0 acme-develop
- git checkout upgrade-1.8.0
- git merge 1.8.0
- Fix all conflicts, when done create downstream pull request, build, test, approve, merge into 

“acme-develop”

mailto:git@github.com
mailto:git@github.com


Howto: Downstream Fork (latest, greatest)

- Important: only for those who really want to follow the latest changes as close as possible 
and are aware of the potential risks that things might break

- Downstream fork based on upstream develop branch
- Pull changes from upstream as pull request merges happen or schedule a task and sync 

every hour (every day… depends on you)
- If your use case is e. g. to update a demo installation with the latest version then besides 

a full build and deployment nothing else is required
- If your use case is to provide the latest version with some degree of stability then maybe 

you want to run some additional manual and/or custom (integration) tests before deploying
- If you find an issue create immediately a JIRA ticket and (if possible) an associated pull 

request
- Only private customizations are developed downstream; everything else (bug fixes, general 

improvements) is contributed immediately upstream



Git Commands: Downstream Fork (latest, greatest)

- Create a for from upstream Fineract in your Github organization via Github UI
- git clone git@github.com:acme/fineract.git && cd fineract
- git remote add upstream git@github.com:apache/fineract
- git fetch upstream && git checkout develop && git merge upstream/develop
- git checkout -b acme-develop develop
- Set your downstream main branch in Github settings to “acme-develop”
- Continue developing on “acme-develop”
- When a change appears upstream…
- git fetch upstream && git checkout develop && git merge upstream/develop
- git checkout -b merge-upstream acme-develop
- git checkout merge-upstream
- git merge develop
- Fix all conflicts, when done create downstream pull request, build, test, approve, merge into 

“acme-develop”

mailto:git@github.com
mailto:git@github.com


Howto: Hotfix

- Create JIRA ticket requesting a new maintenance version (e. g. 1.7.1)
- If you anticipate multiple pull requests then create one sub-task per pull 

request
- Maximum of 3 pull requests per hotfix (the number is somewhat arbitrary)
- Create pull requests based on targeted version tag (“git checkout -b fix-xyz 

1.7.0”)
- No major discussion discussions are needed as hotfixes have strict rules and 

contain only fixes and improvements of existing functionality (backwards 
compatibility!)

- Final vote by the PMC follows usual rules (min. 3 PMC member votes or 72h)
- Important: EVERYONE can request a hotfix and prepare the JIRA ticket and 

pull request(s)



Other Scenarios

- diverging too far from upstream
- new feature in older version
- version upgrade with private customizations
- customize existing services/business logic



Scenario: diverging too far from upstream

- Fineract had no recommendations how to fork the upstream repository
- A lot of (most?) long-time users forked based on the upstream develop 

branch
- … and continued to add their customizations (and the eventual bug fix) in 

the downstream develop branch
- This makes it immediately very difficult to synchronize with upstream, very 

likely to have Git conflicts
- Because synchronization is difficult developers start avoiding this task and fall 

further behind upstream changes



Solution: diverging too far from upstream

- If you continued your customizations downstream on the develop branch then create a new branch 
(“acme-customizations”) and move all your changes from downstream develop branch

- Reset your downstream develop branch (should contain the same as upstream)
- Do a full synchronization of your downstream repository with upstream
- Create a new downstream branch for your future main development; e. g. “acme-develop”; this 

branch should be based on the version you want to upgrade to (“git checkout -b acme-develop 
1.7.0”)

- Create a new branch that will be used to merge your changes; e. g. “upgrade-1.7.0” based on your 
future main development branch (“git checkout -b upgrade-1.7.0 acme-develop”)

- Merge your changes to the upgrade branch (“git checkout upgrade-1.7.0 && git merge 
acme-customizations”)

- Fix all Git conflicts and take the opportunity to rearrange/refactor code according to our 
recommendations to avoid/minimize future conflicts; this might take a while…

- Once you are done, create a downstream pull request based on “upgrade-1.7.0”, build, test, 
approve and finally merge the pull request with your downstream main development branch 
“acme-develop”



Scenario: new feature in older version

- Partner is working on version 1.7.0
- Upstream development “fast” (aka multiple releases per year), version 1.8.0 is 

latest
- Partner wants to contribute new feature in 1.7.0, but hotfix rules forbid to add 

non-backward compatible features to older releases



Solution: new feature in older version

- At the moment not covered by recommendations and hotfix rules
- Needs more discussion with community



Scenario: version upgrade with private customizations

- Partner is working on version 1.7.0
- Upstream development “fast” (aka multiple releases per year), version 1.8.0 is 

latest
- Internal APIs (service interfaces etc.) might have changed significantly
- Partner has extensive private customizations (“secret sauce”)
- How can we ensure to make the migration as smooth as possible (similar to 

database migrations)?



Solution: version upgrade with private customizations

- Recommended folder structure
- Keep customizations separate from Fineract internals (small PoC contained 

upstream)
- Source migrations (similar to Angular “ng update”)



Scenario: customize existing services/business logic

- Partner intends to add small changes to existing business logic (95% is fine, 
5% tweaked)

- At the moment not possible
- Services are automatically picked up by Spring because of “@Service” 

annotation



Solution: customize existing services/business logic

- Spring Boot “auto-configuration”
- conditional configuration
- Small PoC available upstream
- Note: easiest approach given the current architecture, but might be very 

coarse grained (aka services with “a lot” of functions); organizing in use cases 
and workflows would be better



Scenario: sponsor feature development upstream

- Partner wants to be as close as possible to the latest developments
- … but also wants to use only proper releases for production deployments
- Fineract is currently collaborating with a major sponsor who assigned own 

and external development resources to actively drive upstream 
development



Solution: sponsor feature development upstream

- Regular meetings with committers, other participating developers, project 
managers, PMC members to ensure the contributions are in line with the 
community goals

- More resources, more features and fixes, more releases



Summary

- Why are hotfixes such a big deal?
- Enable downstream forks to contribute back upstream
- Faster response to security and other issues
- Smooth upgrades
- Don’t force everyone to include latest developments

- Why is it important to do the code clean-up?
- Developer experience
- Work towards more modular architecture
- Makes customizations easier
- Keep upgrades as simple as possible

- Make sure the community as a whole doesn’t diverge too much from the 
supported releases

- Minimize production deployments that are EOL



Thank you

Ed Cable
edcable@mifos.org
https://mifos.org

Aleksandar Vidakovic
aleks@apache.org

Questions?

mailto:edcable@mifos.org
https://mifos.org
mailto:aleks@apache.org


Appendix



Roadmap (boilerplate, modularity)
✓ Increase release frequency
✓ Hotfix/maintenance releases
✓ Partial/full replacement of business logic (“auto-configuration”)
❏ Reduce boilerplate code

✓ Introduce Lombok for DTO and entity classes
✓ Dependency injection via Lombok’s “@RequiredArgsConstructor”
❏ Introduce Mapstruct to map DTOs to entities and back
❏ Cleanup Spring Data repositories (get rid of unnecessary wrapper classes)
❏ Introduce type safety in REST API layer, remove manual JSON de-/serialization
❏ Important: from this point on we need to refactor internally service interfaces and are technically not backward compatible in 

terms of code, but the REST API would stay the same
❏ Replace any JSON related classes in business logic services with DTOs
❏ Remove handcrafted OpenAPI helper classes
❏ Replace handcrafted SQL queries and JPA with QueryDSL
❏ Add Java Bean Validation annotations to DTO classes

❏ Enforce clean architecture (primarily no JSON de-/serialization in business logic)
❏ Split monolithic codebase into independent modules (“JARs”)
❏ Publish JARs to Maven Central
❏ Fineract distributions: pick and choose only features/modules you need for a project
❏ Future: 

❏ automatic code migration (“OpenRewrite”)?
❏ Self-contained modules/features à la Unix tools?
❏ non-blocking/reactive from top (REST/Webflux) to bottom (database driver/R2DBC)?


