BuildStream
A distribution agnostic integration tool

: O]
10/13/2022 A BuildStream talk at u-u-\i
ApacheCon 2022 @ @' "ﬁ" ‘

Historical overview

e Origins in the Baserock project

 Founded by Codethink in 2016 under the GNOME umbrella

* Used to build GNOME and Freedesktop-SDK releases

* BuildStream 1.0 released early 2018

* Bloomberg contributes to the project, accelerating development
* Build Meetup: Collaboration with projects in the build space

e BuildStream moves to Apache umbrella in 2020

* Ready for BuildStream 2.0

: O]
10/13/2022 A BuildStream talk at Lm-\i
ApacheCon 2022 @ @' "ﬁ" 4

What is BuildStream ?

* A payload agnostic build orchestration tool

* Use BuildStream to build anything
* Bootable system images
* Bootstrapped compilers and runtimes
e Static binaries, binary packages and bundles, container images, ...

* Easily repeat and reproduce the same build on any build host
e Cache and share built artifacts with peers

: O]
10/13/2022 A BuildStream talk at Lm-\i
ApacheCon 2022 @ @' "ﬁ" 4

Why BuildStream ?

* Integration engineering is not fun
* Maintaining downstream patches
* Fixing broken builds
e Build automation / Cl load balancing act

* There is a lot of integration engineering work to do
* Better tooling makes integration engineering less painful

* Codethink does a lot of integration engineering
 We're always trying to push the needle in build & integration

: O]
10/13/2022 A BuildStream talk at Lm-\i
ApacheCon 2022 @ @' "ﬁ" 4

Mission

* Payload agnostic

e Deterministic build sandbox

* Long term build repeatability

* Long term backwards compatibility

» Extensible / ability to build anything

* Developer facing convenience

* Project modularity and encapsulation

: ®
10/13/2022 A BuildStream talk at
ApacheCon 2022 CREE IIIﬁ" ‘

Lets get familiar with the tool a bit

: O]
10/13/2022 A BuildStream talk at u-u-\i
ApacheCon 2022 @ @' "ﬁ" ‘

= EERIS

kind: cmake

build-depends:
- base.bst
- cmake.bst
- fuse3.bst

sources:
- kind: git_tag

url: buildbox:buildbox-fuse.git

track: master

track-tags: True

match:

- "[0-9]*.[0-9]*.[0-9]*"

ref: 0.0.61-0-ge363fdc88adef5db9ee4@be8e89e68d4fd2cl4as
variables:

cmake-local: |

-DCMAKE _EXE_LINKER_FLAGS="-static-libgcc -static-libstdc++"

: ®
10/13/2022 A BuildStream talk at
ApacheCon 2022 CREE IIIﬁ" ‘

Cache keys

" = ‘ tristan@pony: ~/work/buildbox/buildbox-integration ’ Q

3

|

tristan@pony:~/work/buildbox/buildbox-integration$ bst show buildbox-fuse.bst

[==i-=:=-1[1C main:core activity] START Loading elements
[00:00:00][i main:core activity 7 SUCCESS Loading elements
[==c—:=-[1C main:core activity] START Resolving elements
[00:00:00][i i main:core activity] SUCCESS Resolving elements
[--:--:--1L 15 main:core activity 71 START Initializing remote caches
[00:00:007][il main:core activity] SUCCESS Initializing remote caches
[-=%=:=-1L il E main:core activity 7 START Query cache

[00:00:00][i main:core activity 7 SUCCESS Query cache

buildable 800d6580dfde243e2c511276732cdbf831f4af0c8d@9bfe4d2c5299975e3036b base.bst
cached 8e2790blalefc631c51c3b86483e0e102d0b7cbcbbd10c7e007aa72c81b60748 cmake.bst
waiting da26ef48eel709c929011a17dd22143f39a367b3f82994fb@b9a8a8ec974ee8a fuse3.bst
waiting 40ce45589647b1aead5b599760699d707b78928299da@5ad20d9ef3ffc304c9 glog.bst
waiting f813708a17f86558f20458099cf7ff6122826eca8738d400bc9a0@7903362fc93 protobuf.bst
fetch needed 6fb358624dd9c8ebca3aabc6ba7a5e31b811c15bce58fce2c750df48078a19d8 grpc.bst
waiting 75904204429618f53a6ff5a871aa830809964f974a9ab783e665f8be7c3feb6c util-linux.bst
waiting 935b911c6ca@8d@3d8blbcl69be4cd77fcde8880e4f@db91f6f8c139b5aad928 buildbox-common.bst
waiting 3337d4e246898cb42d5433c74751223bfffb555994e62d26944003b6c5936864 buildbox-fuse.bst
tristan@pony:~/work/buildbox/buildbox-integration$ l

10/13/2022 A BuildStream talk at

ApacheCon 2022

The pipeline

: Ul ®
10/13/2022 A BuildStream talk at
ApacheCon 2022 @ @' "ﬁ" 4

Data flow

Obtain external input and
cache it

Stage dependency
artifacts and sources

Execute commands in
isolated sandbox
environment

Cache and upload
resulting build artifact

: ®
10/13/2022 A BuildStream talk at
ApacheCon 2022 CREE III’ﬁ" ‘

Data flow

vy
e

CAS = Content Addressable Storage

: L ®
10/13/2022 A BuildStream talk at
ApacheCon 2022 @ @' "ﬁ" ‘

Remote Execution

Action Cache
-

CAS = Content Addressable Storage

: L ®
10/13/2022 A BuildStream talk at
ApacheCon 2022 @ @' "ﬁ" 4

Building without internet

* The vast majority of FLOSS projects behave well

e Some projects attempt to download at build time
* E.g: cracklib’s Makefile will try to download it's words database
* In this case we just place the words tarball in place before building

* Language oriented build systems introduce package management

* pip (python)
e cargo (rust)
* npm (node.|s)

: O]
10/13/2022 A BuildStream talk at Lm-\i
ApacheCon 2022 @ @' "ﬁ" 4

Enter source composition

* Elements can already have
multiple sources

Fetch source

* What if each source can have
access to what was previously
staged ?

* A more convenient experience
for users of automated Stage as one blob for a build
dependency consumption

e Caveat: Host tool trust

: O]
10/13/2022 A BuildStream talk at Lm-\i
ApacheCon 2022 @ @' "ﬁ" 4

Source composition: pip

kind: pip .
depends : Download a python project
- base.bst I I
e from a git repository
) * Pip source can now read the
sources: . .
- kind: git requirements.txt file
url: github:mypythonproject.git i i
track: master * Use host pip to determine
- kind: pip exact dependencies (pip

requirements-files: requirements.txt

freeze)

e Use host pip to download
dependencies (pip download)

: O]
10/13/2022 A BuildStream talk at Lm-\i
ApacheCon 2022 @ @' "ﬁ" 4

Source composition: cargo

kind: autotools

depends: Download a rust project from a
- base.bst I I
I git repository
) e Cargo source can now read the
sources: .
- kind: git Cargo.lock file
url: gnome:librsvg.git i i
track: librsvg-2.48 * Inthis case, the Cargo.lock file
- kind: cargo provides enough information to

cargo-lock: Cargo.lock

download the deps as tarballs
* No need for host cargo

: O]
10/13/2022 A BuildStream talk at Lm-\i
ApacheCon 2022 @ @' "ﬁ" 4

The Maven problem

* Looking grim when building java with mvn

e So far unable to automate the process of
obtaining dependencies

* The mvn dependencies:go-offline COMMand seems
Intended to address this, but fails

* Since the pom.xm1 SUpports minimal bound
dependencies, much like pip does, we need
to determine the latest version of any loosely
defined dependencies (e.g. pip freeze)

: ®
10/13/2022 A BuildStream talk at
ApacheCon 2022 CREE IIIﬁ" ‘

Wanna help ?

* Any canonical method of vendoring dependencies with maven ?

 How can | determine all of the exact dependency versions which
maven would download if the build were run today ?

* Our experiments attempted to recreate the .m2/ repository when

staging, but this contains metadata and files which appear internal
to maven

: O]
10/13/2022 A BuildStream talk at Lm-\i
ApacheCon 2022 @ @' "ﬁ" 4

Questions ?

Project Website https://buildstream.build/

Documentation https://docs.buildstream.build/

Git https://github.com/apache/buildstream/

: ®
10/13/2022 A BuildStream talk at
ApacheCon 2022 EREE IIIﬁ" ‘

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

