/APACH ECON

From Column-Level to Cell-Level: Towards
Finer-grained Encryption in Apache Parquet

= Xinli Shang, Mohammad Islam

Speaker Intro

e Xinli Shang
o Apache Parquet PMC Chair
o Manager at Uber Data

e Mahammad Islam
o Distinguished Engineer at Uber
o PMC of Apache Oozie and Tez

Agenda

e Apache Parquet introduction

e Modular/column-level encryption

e Cell-level encryption

(@)

(@)

(@)

Use cases
Challenges
Solutions

Benchmarking

Big Data Storage File Format

e Columnar storage file format

o Apache Parquet

m Widely used Big Data File Format
m Designed for efficiency, security & interoperability

o Apache ORC
e Row storage file format
o Apache Avro, JSON, CSV

Row-oriented v.s. column-oriented storage

In row-oriented storage, data is one row at a time

A1 | B A2 | B2 A3 | B3

In column-oriented storage, data is one column at a time

‘A1‘A2|A3|81||83—

https://blog.twitter.com/engineering/en_us/a/2013/dremel-made-simple-with-parquet

Apache Parquet structure in a high level

e Each file has a foote - metadata & schema of
the file

row growp e Datais divided into ‘row group’

e Each ‘row group’ has all column data called
‘column chunk’

e Each‘column chunk’is further divided into
lpagel

e Page is the unit for encoding, compression
and encryption

row group

row group

Column(modular) encryption in Apache Parquet

e Released in parquet-mr 1.12.0
e Column (also called module) is encrypted independently with it's own key
e Already adopted by the industry

o e.g. data retention, encryption-on-write-then-delete after x days

o One Stone, Three Birds: EngBlog

https://www.uber.com/blog/one-stone-three-birds-finer-grained-encryption-apache-parquet/

Finer grain encryption than column level is needed

e A table have mixed data from different country and pii/non-pii

e Different country has different requirements for access and data retention

m Encrypt data firstly then delete the encryption key after m days

e Different Pll data has different sensitivity and requires different protection

| country_a requires location data
rentation after x days

r country_d requires email personal
data can only be accessed by
restrictive groups

country

non-pii

-
L >
J
R

l
>

country_a

country_b

latitue

longitude

non-pii

country_c

country_d

country_e

email

non-pii

non-pii

Technical challenges

e Parquetis columnar storage

o Field/record level encryption go against the design

o Key metadata, algorithm info need to pass to be stored in place

e Encryption is generally a block operation

o Doesn't apply to some data types like integer, float, boolean ...

Technical approaches

e FPE(Format Preserving Encryption) in-place encryption
e Column-splitting then column encryption

e Adding string column then record level encryption

Solution 1: FPE in-place encryption

e FPE is used to encrypt cell data while preserving the original data type.
o double->double
o string->string
o
e The encryption can be done in-place
o Plaintext cell data is encrypted in existing cell

-

v

Pros & cons of FPE solution

e Pros
o In-place encryption, no need extra place to hold encrypted data
e (Cons
o Need to record which cell is encrypted and store it somewhere
m Specification change could impact multiple version of Parquet implementation

o There are ongoing concerns about FPE
m FF2 & FF3 are not considered to be cryptographically secure

Solution 2: Column-splitting then column encryption

e Clone columns with the same data type as the original column

o Adding, write-splitting, read-merging are done inside Parquet

e Apply modular(column) encryption to hidden columns

Original Values

Values with Cell-Level Encryption

column_name

column_name

3

NULL/MASKED

N
7 100

NULL/MASKED

NULL/MASKED

_9b06dfc1_column_name_1
NULL
encr_key1(5)

NULL

encr_key1(2)

NULL

_9b06dfc1_column_name_2
NULL
NULL

NULL

NULL

encr_key2(8)

Pros & cons of column splitting & then module encryption

e Pros

o AES is more secure and mature than FPE
o Column encryption is already adopted in industry, stable and mature now

o No need specification change of Parquet
e (Cons

o Add overhead for splitting columns and merging

o Synchronization is needed cross columns when applying filter

Solution 3: Add string column & record encryption

e Similar as column-splitting, but only add one single column

e Cell datais encrypted individually and is stored in the string column

o The encrypted string contains key metadata, algorithm info...

o Merge the two columns when reading

Original Values

column_name

Values with Cell-Level Encryption

column_name

3

NULL/MASKED

100

NULL/MASKED

NULL/MASKED

_9b06dfc1_column_name_1
NULL
‘keyl_aes_xxx’

NULL

‘keyl_aes_yyy’

‘key2_aes_zz7’

Pros & cons of adding string column & record encryption

e Pros
o Add less columns than approach #2
e (ons

o String column has more overhead

o Each record need to carry the key metadata, encr algorithm. Add more space overhead

Current status

e Approach #2 (column-splitting) is recommended in community
e Requesting for more comments (parquet-2116, design doc)

e Internal implementation is rolled out to production. Will open PR shortly.

https://issues.apache.org/jira/browse/PARQUET-2116
https://docs.google.com/document/d/1Q-d98Os_aJahUynznPrWvXwWQeN0aFDRhZj3hXt_JOM/edit#

Overhead benchmark of approach #2

e Space overhead

o Hidden columns add more size

o Change of data order in original column can result in size increase
e Time overhead

o More time needed for splitting in write and merging in read

o Need to deal with more data as discussed in space overhead

Space overhead

3.1 GHz Quad-Core Intel Core i7, e 5 columns: 1long and 4 string

16G 2133 MHz Memory e Uncompressed file size is 152MB
macOS Monterey Version 12.2.1(21D62)

File Size Overhead with Sorted Data

e NCERPEEEEED: e AR BB o AT File Size Overhead with Random Data
100% == UNCOMPRESSED == SNAPPY GZIP == ZSTD
100%
2 75%
g °\o 75%
8 50% 3
[8 0,
‘g s 50%
= 25% E’
N o e s s 2%
o o N
[s s sesSs - g 0% —
ST ST TSI ST ST S S S S S e = o kA K Kk
oo o oo oo oo oo oo oo oo oo oo oo o oo e P U A A I A A A A A S S A Y
Q'\6\0,19%0@60@/\0%0@%6@\& ¢ ¢ ¢ @ @ @ @ @ @ ¢ ¢ & & ¢ ¢
Qe o e \00\0 (§\°’b0°\° §\°66\° N Qo\°q§\°c§\° ¢§\°Qog\° v

Time overhead

3.1 GHz Quad-Core Intel Core i7, e 5 columns: 1long and 4 string
16G 2133 MHz Memory e Uncompressed file size is 152MB
macOS Monterey Version 12.2.1(21D62)

Time Overhead (Sorted Data with GZIP Compression)

== Write Time Overhead == Read Time Overhead Space Overhead
100% == \\rite Time Overhead == Read Time Overhead Space Overhead

100%

Time Overhead (Random Data with GZIP Compression)

75%
75%

50%

T e oume

0%

50%

Time Overhead

>
&
9.
(7
Increased Time Percentage

25%

—— - - =
0%

d & & & d & & & & & & ¢ & & & S oS < oS oS < oy < o3 oS ey oy oy ey oy
N N QO QO S N QO N N QO S N QO N N ($) (d) (&) ($) ($) ($) (&) $) @) (@) ®) (&) o (@) (@)
Go° s e b e e e e b e e T der e L N S A A S A A S A A S
SN 9 P RSP P S° e g g o o do g g o o g e g e
S XA S SRS U GRS

Percentage of that column encrypted
Percentage of that column encrypted

Compatibility of Approach #2

e Backward compatibility
o Parquet with this feature read data written by older version Parquet
o No changed behavior is expected

e Forward compatibility

o Older version Parquet read cell-level encrypted data
o No specification change but it adds hidden column
o Nextslide —

Forward compatibility of Approach #2

Requested Schema Behavior

No cell-encrypted data is requested No change

Request original column but no hidden column | return data with null or masked
value

Request original column with hidden column | Ether throw exception or user see
like ‘'select *... extra columns

Summary

e Introduce cell-level encryption

e Several approaches available

o FPE &in-place
o Column-splitting then modular encryption (recommended)

o Adding string column then record encryption

e Benchmarking, compatibility, current status

Q&A

We are iring!
email: shangxinli@apache.org

mailto:shangxinli@apache.org

