
Guerrilla Tacticsfor Scalable E-commerce Services(React,Spring, NoSQL)with Apache Cassandra® and Apache Pulsar®

What’s the connection?

● E-commerce?
● Guerilla tactics?
● Cyberpunk 2077?

DBRE/Developer Advocate

@aaronploetz

@aploetz / @aar0np

@aploetz

➢ Former SWE/DevOps/DB Lead @
 &

➢ Host - Apache Cassandra Corner podcast

➢ Cassandra® MVP

➢ Worked as an author on:
○ Mastering Apache Cassandra 3.x
○ Seven NoSQL Databases in a Week

Aaron Ploetz

LEVEL

50

Architecture

1
VALUE

Data Model

3
VALUE

Services

4
VALUE

Demo

6
VALUE

Streaming

5
VALUE

Use Cases

2
VALUE

]|[

]|[]|[

]|[]|[

]|[

Agenda

Backend

Services

User Interface
Services

{ REST }

Repositories

drivers

Web
Server

Web Frontend

Web
Browser

Native app or
Browsers

Spring-mvc

spring-data

Object-Mapping

Order
Processor

Tech Stack

Apache Cassandra

● Read / Write Performance
● Linear Scalability
● High Availability
● Geographical Distribution
● Platform Agnostic

NODE

NODE

NODE

NODE

NODE NODE

NODE

Spring Data Cassandra
● Easy access to connection properties.

○ application.yml
● Reduces boilerplate code.
● Provides useful CRUD methods:

○ save(entity)
○ findById(id)
○ delete(id)

Spring Data Cassandra
○ count()
○ findAll()
○ saveAll(Iterable<>)

Many
containers

died to bring
us this

information.

Apache Pulsar

● Pub-sub, queue, stream - All in one!
● Designed with the cloud in mind.
● Geographic awareness.
● Highly scalable
● automatic rebalancing for partitioned topics
● Lightweight Pulsar function library

]|[

LEVEL

50

Architecture

1
VALUE

Data Model

3
VALUE

Services

4
VALUE

Demo

6
VALUE

Streaming

5
VALUE

Use Cases

2
VALUE

]|[

]|[]|[

]|[

]|[

Agenda

11

E-commerce Subsystems

Loyalty
Order

Recommendations

Cart User Profile

Curbside

PickupPromotions

Product
Gift

Registry

12

E-commerce Subsystems

Loyalty
Order

Recommendations

Cart User Profile

Curbside

PickupPromotions

Product
Gift

Registry

Product Catalog
● Category (Navigation)
● Product (Data)
● Pricing

Shopping Cart
● User Cart Data
● Cart Products

User Profile
● User Data
● Single Sign-On

Ordering System
● Order Data Processing
● Order History

LEVEL

50

Architecture

1
VALUE

Data Model

3
VALUE

Services

4
VALUE

Demo

6
VALUE

Streaming

5
VALUE

Use Cases

2
VALUE

]|[

]|[]|[

]|[]|[

]|[

Agenda

Cassandra Data Modeling
Tables built to suit a query

Pros:

● Fast reads
● Simple query model

Cons:

● Data duplication (but that’s ok)
● Manual integrity enforcement

userId deptId firstName lastName

1 1 Edgar Codd

2 1 Raymond Boyce

departmentId department

1 Engineering

2 Math

Employees

Departments

userId firstName lastName department

1 Edgar Codd Engineering

2 Raymond Boyce Engineering

3 Sage Lahja Math

4 Juniper Jones Botany

Data Modeling “Cassandra Style”

Cassandra Primary Keys
● PRIMARY KEY ((partitionK1,partitionK2),clusteringK1,clusteringK2);

Partition Key
● Determines where (in the cluster) the data is stored.
● Required for proper query routing.

Clustering Key
● Enforces on-disk sort order.
● Provides row uniqueness.

Data Modeling “Cassandra Style”

Tips for Large Scale
● Data queried together should be

stored together.
● Use high-cardinality key values.
● No full table scans!
● Keep things small!

○ Partitions
○ Result sets

User

has

Cart

has Address
1

m

1 m

checks
out

contains
Order

Product

m

1

1

m

containsm

1qty

Queries
● Need to be able to query a user’s “active” cart.
● Need to query all carts for a user.
● User needs to view all products in their cart.
● User needs to add a product to their active cart.
● User needs to remove a product from their active cart.

Data Model - Queries to Support

Data Model - Physical

cart_products
cart_id PK
product_timestamp CK
product_id CK
brand
desc
model
images[]
name

user_carts
user_id PK
cart_name CK
cart_id CK
cart_is_active
user_email

1m

Partition Key PK
Clustering Key CK

Data Model - Cart Products

Cart Products
● Solving the cart query.
● Clustering on timestamp.
● Enforcing a TTL.

CREATE TABLE cart_products (
 cart_id uuid,
 product_timestamp timestamp,
 product_id text,
 product_description text,
 product_name text,
 quantity int,
 PRIMARY KEY (cart_id,
product_timestamp, product_id)
) WITH CLUSTERING ORDER BY
(product_timestamp DESC, product_id ASC)
 AND default_time_to_live = 5184000;

Shopping Cart - Special Considerations

Anti-bot/malware measures:
● 60 day TTL (time to live).
 default_time_to_live = 5184000

Old carts in the DB are avenues of attack!
● Rate limiter on product-add service.

Bot attacks will add many, many products in a matter of
seconds!

LEVEL

50

Architecture

1
VALUE

Data Model

3
VALUE

Services

4
VALUE

Demo

6
VALUE

Streaming

5
VALUE

Use Cases

2
VALUE

]|[

]|[]|[

]|[]|[

]|[

Agenda

Service Endpoint - User Data GETs

User Data

http://localhost:8080/swagger-ui/index.html?configUrl=/v3/api-docs/swagger-config#/

Data Model - User by Email

User by Email
● A “manual” index.
● Returns a user_id for

an email address.

28

CREATE TABLE user_by_email (
 user_email TEXT PRIMARY KEY,
 user_id UUID,
);

Service Endpoint - User By Email

> SELECT * FROm user_by_email WHERE user_email=’aaronploetz@gmail.com’;

 user_email | user_id

----------------------------+--------------------------------------

 aaronploetz@gmail.com | dce3d828-4d27-40da-b48b-ef5096d1b113

(1 rows)

User By Email CQL:

29

Service Endpoint - User By Email

 public ResponseEntity<User> getUserByEmail(HttpServletRequest req,
 @PathVariable(value = "email")
 @Parameter(name = "email", description = "email address", example = "bob.slydell@bobs.com")
 String email) {

 Optional<UserByEmailEntity> userByEmail = userByEmailRepo.findById(email);

 if (userByEmail.isPresent()) {

 Optional<UserEntity> user = userRepo.findById(userByEmail.get().getUserId());

 if (!user.isPresent()) {
 return ResponseEntity.notFound().build();
 }

 return ResponseEntity.ok(mapUser(user.get()));

 } else {
 return ResponseEntity.notFound().build();
 }
 }

getUserByEmail:

30

LEVEL

50

Architecture

1
VALUE

Data Model

3
VALUE

Services

4
VALUE

Demo

6
VALUE

Streaming

5
VALUE

Use Cases

2
VALUE

]|[

]|[]|[

]|[]|[

]|[

Agenda

Messaging Requirements

● Place a user’s order.
● Allow business functions on an order.
● Track the status timeline of an order.

Order Processing System

Website PickedPending CompleteShipped

Order
Processor

order

Events / Actions

● Message ordering.
● Message delivery (guaranteed, exactly one -

especially for payment).
● Scalability (high volumes, handling spikes,

backpressure).
● Using the Publish-Subscribe pattern (Pub/Sub) for

sending and receiving messages.

LEVEL

50

Architecture

1
VALUE

Data Model

3
VALUE

Services

4
VALUE

Demo

6
VALUE

Streaming

5
VALUE

Use Cases

2
VALUE

]|[

]|[]|[

]|[]|[

]|[

Agenda

Demo
● Sign-in
● Navigate products
● Add to cart
● Place order
● Process order

Decimal Precision
● Use a DECIMAL or BigDecimal type!

https://0.30000000000000004.com/

TLS Certificates
● HTTP… HTTPS!
● Be sure to secure your site with a certificate!

Tax Calculation
● Do not attempt!
● Use a tax software package/service

Tips:

https://0.30000000000000004.com/

Password Hashing
● Make sure that the password is NEVER

stored in plain text!

● Storage:

 BCryptPasswordEncoder pEncoder = new BCryptPasswordEncoder();
 String hashedPassword = pEncoder.encode(userData.getPassword());

● Comparison:

 BCryptPasswordEncoder pEncoder = new BCryptPasswordEncoder();
 if (pEncoder.matches(rawPassword, hashedPassword)) {

Resources
● https://github.com/datastaxdevs/workshop-ecommerce-app/

● https://www.youtube.com/c/DataStaxDevs

● https://cassandra.apache.org/

● https://pulsar.apache.org/

● https://discord.gg/c5NyPYXS

https://github.com/aar0np/workshop-ecommerce-app/tree/apache
https://www.youtube.com/c/DataStaxDevs
https://pulsar.apache.org/

Thank you!

