
Apache Con 2022
Oct 6, 2022

Tech Deep Dive

Understanding
Pulsar Broker Load Balancing

Heesung Sohn
Sr. Platform Engineer • StreamNative

A platform engineer at StreamNative based in
the San Francisco Bay Area.

Currently focusing on Pulsar Broker Load
Balancing.

Previously worked on scaling Aurora Mysql
internals for its Serverless features at AWS.

LinkedIn
https://www.linkedin.com/in/heesung-sohn-aa5b
9561/

Heesung Sohn
Sr. Platform Engineer
StreamNative

Blog : Achieving Broker Load Balancing with Apache Pulsar
https://streamnative.io/blog/engineering/2022-07-21-achieving-broker-load-balancin
g-with-apache-pulsar/

https://www.linkedin.com/in/heesung-sohn-aa5b9561/
https://www.linkedin.com/in/heesung-sohn-aa5b9561/
https://streamnative.io/blog/engineering/2022-07-21-achieving-broker-load-balancing-with-apache-pulsar/
https://streamnative.io/blog/engineering/2022-07-21-achieving-broker-load-balancing-with-apache-pulsar/

Understanding Broker Load Balancing

Agenda

Intro: Pulsar Broker Load Balancing

Bundles

Auto Bundle Load Balance Logic

Operation Tips

On-going Work

Q&A

Understanding Broker Load Balancing
Load Balancing in Distributed Messaging/Streaming Systems

In distributed messaging/streaming systems:

➔ Messages are grouped under topics
➔ Message pub-sub for a topic is served by a single broker
➔ Topics(or groups of topics) are considered as a “good” load-balance entity

In our context, Load balancing refers to efficiently distributing topic messages across brokers.

Topic1:
{msg, msg, msg}

broker3

broker2

broker1

Topic2:
{msg, msg, msg}

Topic3:
{msg, msg, msg}

Topic4:
{msg, msg, msg}

disk

disk

disk

client

client

Understanding Broker Load Balancing
Broker Load Balancing in Pulsar

In Pulsar:

Pulsar separates serving-persistence layers.

➔ Brokers serve topics’ pub-sub sessions.
➔ Brokers read/write messages in Bookies.

Broker Load balancing refers to efficiently distributing topic serving sessions across brokers.

Q: How does Pulsar make the Topic Load Balance efficient?

Bookie1
(disk)

Bookie2
(disk)Bookie3

(disk)

Topic1:
{msg, msg, msg}

broker3

broker2

broker1

client

Topic2:
{msg, msg, msg}

Topic3:
{msg, msg, msg}

Topic4:
{msg, msg, msg}

Serving Layer Persistence Layer

client

In Pulsar, unlike monolithic systems,

Topic-broker assignments are “flexible” as brokers do not persist messages locally.

➔ New owner brokers simply establish new sessions with the clients.
➔ Minimal client connection jitters. New owner brokers look up bookie metadata.

Q: Is dynamic unloading possible without harming the performance?

A: Pulsar uses dynamic topic rebalancing.
➔ Assign topics to underloaded brokers.
➔ Unload topics from overloaded brokers(high cpu, memory, I/O ...)

Understanding Broker Load Balancing
Idea: Dynamic Topic Rebalancing

A: Yes, Pulsar can seamlessly transfer topic sessions thanks to the serving-persistence separation.

Q: How does Pulsar balance topics(sessions) across brokers?

Understanding Broker Load Balancing

Agenda

Intro: Pulsar Broker Load Balancing

Topic Bundles

Auto Bundle Load Balance Logic

Operation Tips

On-going Work

Q&A

Q: Why need this middle layer group, bundles?

Understanding Broker Load Balancing
Topics are balanced to brokers at the bundle level

bundle1

Bundle Key Range(8bits):
 [0x00 ,0x80, 0xFF]

bundle2

hash(“topic1”) => 0x0F(bundle key)

topic1

hash(“topic2”) => 0x4F

topic2 topic3

hash(“topic3”) => 0x8F

With the multi-tenancy nature,
Pulsar needs to scale for millions of topics.

Problem: too much to track millions of the topic-level metadata

Solution: topic sharding/bundling.

Topics are grouped into bundles as Broker Load Balancing Unit Topic-Bundle LooKup by Hashed Sharding

Understanding Broker Load Balancing

Agenda

Intro: Pulsar Broker Load Balancing

Bundles

Auto Bundle Load Balance Logic

Operation Tips

On-going Work

Q&A

1. Bundle-Broker Assignment

➔ Assign to a new broker when no owner

Understanding Broker Load Balancing
Auto Bundle Load Balance Logics in Pulsar

2. Bundle Unload

➔ Unload bundles from overloaded
to underloaded brokers

3. Bundle Split

➔ Split overloaded bundles

broker1 hash(topic3)
=> bundle1

broker1 hash(topic3)
=> bundle1

broker2

hash(topic3), hash(topic6)
=> bundle1

x

hash(topic3)
=> bundle1

hash(topic6)
=> bundle2

assign

unload

re-assign

split
Child bundles

Understanding Broker Load Balancing
Bundle-Broker Assignment (Assign a bundle to a new broker when no owner)

Broker1
(proxy)

Client

topic3

broker2
broker3

Metadata
Store

hash(topic3)
=> bundle2

No
owner
now

Leader
broker

Ask leader to make
an assignment

broker2 is green.
connect broker2 as
the owner

Leader said
I should be
the owner

bundle2=>
bundle2=>
broker2Randomly

connect

Own
bundle2

Ready to serve!

Q1: How does leader know broker2 is green?
Q2: What’s the strategy to select “a
broker” among the available brokers?

Q1: How does leader know broker2 is green?

Bundle Load Data :

bundle-level msg in/out rates.

Understanding Broker Load Balancing
Leader collects global load info

broker1

broker2
broker3

Metadata
Store

Leader
broker

Load data

Load data

Load data Load data
Broker Load Data:

CPU, memory, and network
throughput in/out rates.

A: The leader broker collects global load info via Metadata Store.

Currently, the leader makes all load balance decisions.

LeastResourceUsageWithWeight(new)

cur_load = max(cpu, mem, network)

load = w * load + (1 - w) * cur_load

avg_load = avg(load) from all brokers’ load

candidates = brokers, load < avg_load - α(default 10%)

Select a random broker among the candidates

LeastLongTermMessageRate(default)

load=

If max(cpu, mem, network) <= threshold(85%)

=>ƒ(longTermMsgIn, longTermMsgOut)

Select a random broker among least long-term
msg rate.

Understanding Broker Load Balancing
Bundle-Broker Assignment Strategy

Q2: What’s the strategy to select “a broker” among the available brokers?

A: Pulsar can configure the following strategies(configurable by ModularLoadManagerStrategy.)

Exponential
Moving
Average(EMA)
w=0.9

Understanding Broker Load Balancing
Bundle Unload (Unload bundles from overloaded to underloaded brokers)

broker1

broker2 broker3

Metadata
Store

Leader
broker

Publisher 1 bombarding!

bundle1=>broker1
bundle2=>broker1

Publisher 2

topic1:{msg}

topic3:{msg}

hash(topic1)
=> bundle1

hash(topic3)
=> bundle2

Close
Connections

broker2 is green
Re-connect
/re-assign

unload bundle2 from broker1 (too much load on broker 1)

Q: What’s the strategy to select overloaded brokers and bundles?

bundle1=>broker1
bundle2=>broker1 disable

remove

bundle1=>broker1
bundle2=>

New owner
assigned

bundle1=>broker1
bundle2=>broker2

own

Understanding Broker Load Balancing
Bundle Unloading(Shedding) Overload Shedder Strategy

loadBalancerBrokerOverloadedThresholdPercentage = default 85%

Q: What’s the strategy to select overloaded brokers and bundles?

A: Pulsar can configure ThresholdShedder(default), OverloadedShedder, UniformLoadShedder

Understanding Broker Load Balancing
Bundle Unloading(Shedding) ThresholdShedder Strategy

loadBalancerBrokerThresholdShedderPercentage = default 10%

Understanding Broker Load Balancing
Bundle Unloading(Shedding) UniformLoadShedder Strategy

loadBalancerMsgThroughputMultiplierDifferenceShedderThreshold
loadBalancerMsgRateDifferenceShedderThreshold

Understanding Broker Load Balancing
Bundle split (Split overloaded bundles)

broker1

broker2

broker3

Metadata
Store

Leader
broker

Publisher 1
bombarding!

Publisher 2

bundle1=>broker1

Split bundle1 (too much traffic on bundle1)

topic1:{msg}

topic3:{msg}

hash(topic1), hash(topic3)
=> bundle1

(Optionally) Unload the child bundles

bundle1-1=>broker1
bundle1-2=>broker1

Split bundle 1
 =>
{bundle1-1,bundle 1-2}

Q: What’s the strategy to split overloaded bundles?

Threshold-based Bundle Split Strategy
(when to split)

Split bundles if any resource(OR gate) is beyond
LoadBalancerNamespaceBundle* thresholds.

Defaults
LoadBalancerNamespaceBundleMaxTopics = 1000
LoadBalancerNamespaceBundleMaxSessions = 1000
LoadBalancerNamespaceBundleMaxMsgRate = 30000
LoadBalancerNamespaceBundleMaxBandwidthMbytes = 100

Understanding Broker Load Balancing

Bundle Split Boundary Compute Strategy
(how to split)

RANGE_EQUALLY_DIVIDE_NAME (default):
split to parts with the same hash range size

TOPIC_COUNT_EQUALLY_DIVIDE:
split to parts with the same topic count.

 configurable by
DefaultNamespaceBundleSplitAlgorithm.

Q: What’s the strategy to split overloaded bundles?

A: Pulsar can configure when and how to splits bundles.

Bundle Split Strategies

Understanding Broker Load Balancing
RANGE_EQUALLY_DIVIDE_NAME Split Example

Bundle1
0x00-0x80

Bundle_Key_Partitions
 [0x00 ,0x80, 0xFF]

hash(“topic1”) => 0x00

topic1

hash(“topic2”) => 0x60

topic2

Split Bundle
[0x00-0x80] at
0x40

Bundle1-1
0x00-0x40

Bundle_Key_Partitions
 [0x00 ,0x40, ,0x80, 0xFF]

Bundle1-2
0x40-0x80

hash(“topic1”) => 0x00

hash(“topic2”) => 0x60

topic1 topic2

Understanding Broker Load Balancing

Agenda

Intro: Pulsar Broker Load Balancing

Bundles

Auto Bundle Load Balance Logic

Operation Tips

On-going Work

Q&A

Understanding Broker Load Balancing
Load Balance Metrics: Useful to monitor Load Balance Input / Output

Type Name Description

Load Balance Input signal pulsar_lb_bandwidth_in_usage Broker bandwidth in usage % out of 100%

Load Balance Input signal pulsar_lb_bandwidth_out_usage Broker bandwidth out usage % out of 100%

Load Balance Input signal pulsar_lb_memory_usage Broker heap usage % out of 100%

Load Balance Input signal pulsar_lb_directMemory_usage Broker dict_memory usage % out of 100%

Load Balance Input signal pulsar_lb_cpu_usage Broker cpu usage % out of 100%

Load Balance Split Output pulsar_lb_bundles_split_count Bundle split counts

Load Balance Unload Output pulsar_lb_unload_bundle_count Bundle unload counts

Load Balance Unload Output pulsar_lb_unload_broker_count Bundle unload broker counts

Load Balance Assignment Output pulsar_topics_count Serving topic counts

Load Balance Assignment Output owned-bundles Bundle ownership cache size by
caffeine_cache_estimated_size

Understanding Broker Load Balancing
Load Balance Dashboard

Useful Admin CLIs to Check Bundle States
Understanding Broker Load Balancing

1. How to list the bundles in the namespace
bin/pulsar-admin namespaces bundles my-tenant/my-namespace
⇒ "boundaries" : ["0x00000000", "0x10000000", …, "0xffffffff"], "numBundles" : 16

3. How to look up the bundle by topic
bin/pulsar-admin topics bundle-range persistent://my-tenant/my-namespace/my-topic
=> 0x00000000_0x10000000

4. How to look up the owner broker by topic
bin/pulsar-admin topics lookup persistent://my-tenant/my-namespace/topic
⇒ pulsar://my-broker-1:6650

2. How to list the topics in the bundle
bin/pulsar-admin topics list my-tenant/my-namespace --bundle 0x00000000_0x10000000
⇒ persistent://my-tenant/my-namespace/my-topic

Manual Split and Unload
Understanding Broker Load Balancing

Q: Can Admin manually split and unload bundles?
A: Yes. The unloaded bundles will be reloaded to the next available brokers soon.

Let’s check the CLIs for this operations.

How to check bundle load stats
pulsar-admin --admin-url http://my-broker-x-url:8080 broker-stats load-report
⇒
...
 "bundleStats" : {
 "my-tenant/my-namespace/0x80000000_0xc0000000" : {
 "msgRateIn" : 2100.99
 "msgThroughputIn" : 2367100.92
 "msgRateOut" : 2100.99
 "msgThroughputOut" : 2367100.92
 "consumerCount" : 2200,
 "producerCount" : 2200,
 "topics" : 2300,
 "cacheSize" : 107600
 }

How to check bundle load stats
Understanding Broker Load Balancing

1. How to manually split and unload the bundles in the namespace
pulsar-admin namespaces split-bundle --bundle 0x80000000_0xc0000000 -san
range_equally_divide -u tenant/namespace

2. How to manually split and unload the largest bundles in the namespace
pulsar-admin namespaces split-bundle -b LARGEST -san topic_count_equally_divide -u
tenant/namespace

3. How to unload a bundle
pulsar-admin namespaces unload tenant/namespace -b 0x80000000_0xc0000000

4. How to unload every bundle in the namespace.
pulsar-admin namespaces unload tenant/namespace

Manual Split and Unload
Understanding Broker Load Balancing

Understanding Broker Load Balancing

Agenda

Intro: Pulsar Broker Load Balancing

Bundles

Auto Bundle Load Balance Logic

Operation Tips

On-going Work

Q&A

Recent Community Work
Understanding Broker Load Balancing

More randomized assignment strategy with additional signals
- LearResourceUsageWithWeight, new bundle assignment 16281

Improve input accuracy and output visibility
- Resource usage limit validation and better unload logging(sample non-unload decisions) 16937
- Disregard fluctuating memory when computing load report frequency (less zk overhead) 17598
- Better cgroup cpu usage collection (more accurate cgroup cpu usage) 17820

[PIP-192] Broker Load Balancer Improvement Project (architectural change) 16691

https://github.com/apache/pulsar/pull/16281
https://github.com/apache/pulsar/pull/16937
https://github.com/apache/pulsar/pull/17598
https://github.com/apache/pulsar/pull/17820
https://github.com/apache/pulsar/issues/16691

Goal 1: Make auto load balance fault-tolerant, consistent, distributed.

PIP-192: Goals and Proposals
Understanding Broker Load Balancing

Currently Proposal

Leader globally makes all load balance
(assignment/unload/split) decisions and
commands each owner broker via RPC with retries.

Each owner broker decides and runs assignment
and split logic.

Leader broker still globally decides unload logic.

RPC → Event-Sourcing : brokers reliability react on
load balance commands from a persistent topic.

PIP-192: Goals and Proposals
Understanding Broker Load Balancing

Goal 2: Efficiently replicate ownership and load data across brokers for high-performance

Currently Proposal

The metadata are persisted in ZK and replicated to
all broker’s in-memory cache(via watcher)

For the ownership data, use a persistent topic and
replicate to all broker’s in-memory cache(via topic
table-view)

For the load data, use non-persistent topics and
replicate only necessary metrics. (light-weight)

Currently Proposal

When clients tries to look up the new owner broker,
they need to go through the bundle assignment
logic via the leader broker.

Minimize the gap by “transfer”, where the new
owner is pre-assigned.

PIP-192: Goals and Proposals
Understanding Broker Load Balancing

Goal 3: Minimize the topic unavailability during unloading

PIP-192: Goals and Proposals
Understanding Broker Load Balancing

Goal 4: Provide ways to manually override unload decisions to particular brokers.

Currently Proposal

Not supported. Introduce “--dest” option in the unload admin command, using the new
unload “transfer” behavior.

Understanding Broker Load Balancing
PIP-192: Topics and TableView for load data and bundle ownership store

Long-term Goal:

- Minimize ZK(Metadata store) dependency
ZK dependency discussions

broker1

broker2

Metadata
Store(ZK)

Leader
broker

load data /
bundle ownership

broker3

In PIP-192, the bundle ownership topic is called as
 “Bundle State Channel”.

pub
sub(tableview)

Topic

pub
sub(tableview)

pub
sub(tableview)

pub
sub(tableview)Proposal:

Pulsar already has solutions to replicate
such light-weight KV stores.

Use Topic and TableView to store and
replicate load and bundle ownership data

https://github.com/apache/pulsar/issues/572#issue-243298720

BSC is a bundle ownership store for owner broker
discovery(lookup).

● A persistent topic with table-view
● All brokers publish and consume the ownership

state(table-view).
● Materialize the global ownership state, by the topic

auto compaction.
● Ownership look-ups can be deferred if the bundle

states are in-flight(not “owned”)

BSC broadcasts bundle state changes.

● Broadcast the total order of all bundle state changes
(sequential consistency)

● All brokers react(plays their role) on the bundle state
changes.

Understanding Broker Load Balancing
PIP-192: Bundle State Channel

Bundle State Life Cycles

PIP-192: Bundle State Channel PoC Demo

- Bundle State Channel
- Auto Bundle Assignment
- Auto Bundle Unload
- Manual Bundle Transfer
- Compaction
- Recovery

Understanding Broker Load Balancing

Questions?

Apache Con 2022
Oct 6, 2022

Tech Deep Dive

Understanding
Broker Load Balancing

Heesung Sohn
Sr. Platform Engineer • StreamNative

Thank you!

