

Sr. Platform Engineer the San Francisco Bay Area.

m Heesung Sohn A platform engineer at StreamNative based in
o StreamNative

vﬂ:p Currently focusing on Pulsar Broker Load
Balancing.

Previously worked on scaling Aurora Mysq|
internals for its Serverless features at AWS.

LinkedIn

https://www.linkedin.com/in/heesung-sohn-aasb
9561/

Blog : Achieving Broker Load Balancing with Apache Pulsar
https://streamnative.io/blog/engineering/2022-07-21-achieving-broker-load-balancin
g-with-apache-pulsar/

https://www.linkedin.com/in/heesung-sohn-aa5b9561/
https://www.linkedin.com/in/heesung-sohn-aa5b9561/
https://streamnative.io/blog/engineering/2022-07-21-achieving-broker-load-balancing-with-apache-pulsar/
https://streamnative.io/blog/engineering/2022-07-21-achieving-broker-load-balancing-with-apache-pulsar/

Understanding Broker Load Balancing

Agenda

Intro: Pulsar Broker Load Balancing
Bundles

Auto Bundle Load Balance Logic
Operation Tips

On-going Work

Q&A

Understanding Broker Load Balancing
Load Balancing in Distributed Messaging/Streaming Systems

broker1 disk

broker2 | disk

client
{msg, msg, msg}
client Taniad-
fopiot: broker3 | jisk

{msg, msg, msg}

In distributed messaging/streaming systems:

-> Messages are grouped under topics
-> Message pub-sub for a topic is served by a single broker
-> Topics(or groups of topics) are considered as a “good” load-balance entity

In our context, Load balancing refers to efficiently distributing topic messages across brokers.

Understanding Broker Load Balancing

Broker Load Balancing in Serving Layer Persistence Layer

broker1

Bookie1

broker2

client

Bookie3
(disk)

client | Tanied-:
fopiot: broker3
{msg, msg, msg}

In
Pulsar separates serving-persistence layers.

-> Brokers serve topics’ pub-sub sessions.
-> Brokers read/write messages in Bookies.

Broker Load balancing refers to efficiently distributing topic serving sessions across brokers.

Q: How does Pulsar make the Topic Load Balance efficient?

Understanding Broker Load Balancing
|ldea: Dynamic Topic Rebalancing

Q: How does Pulsar balance topics(sessions) across brokers?

A: Pulsar uses dynamic topic rebalancing.
=> Assign topics to underloaded brokers.
-> Unload topics from overloaded brokers(high cpu, memory, I/O ...)

Q: Is dynamic unloading possible without harming the performance?

A: Yes, Pulsar can seamlessly transfer topic sessions thanks to the serving-persistence separation.

In Pulsar, unlike monolithic systems,

Topic-broker assignments are “flexible” as brokers do not persist messages locally.

=> New owner brokers simply establish new sessions with the clients.
=> Minimal client connection jitters. New owner brokers look up bookie metadata.

Understanding Broker Load Balancing

Agenda

Intro: Pulsar Broker Load Balancing
Topic Bundles

Auto Bundle Load Balance Logic
Operation Tips

On-going Work

Q&A

Understanding Broker Load Balancing
Topics are balanced to brokers at the bundle level

Topics are grouped into bundles as Broker Load Balancing Unit

Q: Why need this middle layer group, bundles?

With the multi-tenancy nature,
Pulsar needs to scale for millions of topics.

Problem: too much to track millions of the topic-level metadata

Solution: topic sharding/bundling.

Topic-Bundle LooKup by Hashed Sharding

Bundle Key Range(8bits):

[0x00 ,0x80, OxFF]
bundle1 bundle2
topic1 topic2 topic3

hash(“topic1”) => 0x0F(bundle key)
hash(“topic2”) => Ox4F

hash(“topic3”) => Ox8F

Understanding Broker Load Balancing

Agenda

Intro: Pulsar Broker Load Balancing
Bundles

Auto Bundle Load Balance Logic
Operation Tips

On-going Work

Q&A

Understanding Broker Load Balancing
Auto Bundle Load Balance Logics in Pulsar

1. Bundle-Broker Assignment assign hash(topic3)
. Digken => pbundle1
-> Assign to a new broker when no owner
2. Bundle Unload unioad T
% (topic3)
-> Unload bundles from overloaded
to underloaded brokers re-assign
broker2
3. Bundle Split . Child bundles
split | hash(topic3) | hash(topic6)

-> Split overloaded bundles => bundle1 | => bundle2

Understanding Broker Load Balancing
Bundle-Broker Assignment (Assign a bundle to a new broker when no owner)

rasnopicd) [/No) pundez=>
Randomly => bundle2 owner e
topi connect / Broker1 now Metadata
opic3 > — st
| (proxy) o
Ask leader to make broker2 is green
an assignment Leader | connect broker2as

Client - | - | broker |the owner

. .| broker2
Ready to serve!

broker3

Leader said
| shou e

the owner Q1: How does leader know broker2 is green?

Q2: What’s the strategy to select “a
broker” among the available brokers?

Understanding Broker Load Balancing
Leader collects global load info

Bundle Load Data :

bundle-level msg in/out rates.

Broker Load Data:

CPU, memory, and network
throughput in/out rates.

broker1

Load data Metadata
//
Store

Leader
broker

Load/data

broker2

Q1: How does leader know broker2 is green?

broker3

A: The leader broker collects global load info via Metadata Store.

Currently, the leader makes all load balance decisions.

Understanding Broker Load Balancing
Bundle-Broker Assignment Strategy

Q2: What’s the strategy to select “a broker” among the available brokers?

A: Pulsar can configure the following strategies(configurable by ModularLoadManagerStrategy.)

LeastLongTermMessageRate(default)

load=

If max(cpu, mem, network) <= threshold(85%)
=>f(longTermMsgIn, longTermMsgOut)

Select a random broker among least long-term
msg rate.

LeastResourceUsageWithWeight(new)

cur_load = max(cpu, mem, network)
Exponential

. . " ~—Moving
load = w * load + (1 - w) * cur_load Average(EMA

w=0.9
avg_load = avg(load) from all brokers’ load

candidates = brokers, load < avg_load - O(default 10%

Select a random broker among the candidates

Understanding Broker Load Balancing
Bundle Unload (Unload bundles from overloaded to underloaded brokers)

hash(topic1) hash(topic3)

=> bundle1 => bundle2
topic1:{msg} /_\< / >/_\
: . disabl
Publisher 1 bombarding!] = Metadata bundle1=>broker1
Close remove ore bundle2=>broker2
Conne

topic3:{msg}
Publisher 2

Leader unload bundle
broker | broker2 is‘green

Re-connect rom broker1 (too much load on broker 1)

re-assign

New owner
assigned

broker2 broker3

Q: What’s the strategy to select overloaded brokers and bundles?

Shed
bundles

Threshold

Broker
resource ¢
usage

loadBalancerBrokerOverloadedThresholdPercentage= default 85%

Rl

' Threshold
b shedder
' percentage

Cluster
» average
usage

Broker
average 9
usage

r-— - . -ﬂ
L-- - . -J

L8

loadBalancerBrokerThresholdShedderPercentage = default 10

(Max - Min) / Min > Threshold- Shed bundles = (Max - Min) x 0.2

Max

Threshold

Message
rate
or
throughput

L

loadBalancerMsgThroughputMultiplierDifferenceShedderThreshold
loadBalancerMsgRateDifferenceShedderThreshold

Understanding Broker Load Balancing
Bundle split (Split overloaded bundles)

topic1:{msg}

Publisher 1

topic3:{msg}

Publisher 2

bombarding!

Leader
broker

broker2

Split bundle 1
=>

Metadata
Store

{bundle1-1,bundle 1-2}

hiindle1=>hrnoker1

bundle1-1=>broker1
bundle1-2=>broker1

Split bundle1 (too much traffic on bundle1)
(Optionally) Unload the child bundles

broker3

Q: What’s the strategy to split overloaded bundles?

Understanding Broker Load Balancing
Bundle Split Strategies

Q: What'’s the strategy to split overloaded bundles?

A: Pulsar can configure when and how to splits bundles.

Threshold-based Bundle Split Strategy
(when to split)

Split bundles if any resource(OR gate) is beyond
LoadBalancerNamespaceBundle* thresholds.

Defaults

LoadBalancerNamespaceBundleMaxTopics = 1000
LoadBalancerNamespaceBundleMaxSessions = 1000
LoadBalancerNamespaceBundleMaxMsgRate = 30000
LoadBalancerNamespaceBundleMaxBandwidthMbytes = 100

Bundle Split Boundary Compute Strategy
(how to split)

RANGE_EQUALLY_DIVIDE_NAME (default):
split to parts with the same hash range size

TOPIC_COUNT_EQUALLY_DIVIDE:
split to parts with the same topic count.

configurable by
DefaultNamespaceBundleSplitAlgorithm.

Understanding Broker Load Balancing

RANGE_EQUALLY_DIVIDE_NAME Split Example

Bundle_Key_ Partitions

[0x00 ,0x80, OxFF]

Bundle1
0x00-0x80

Split Bundle
[0x00-0x80] at
0x40

topic1 topic2

hash(“topic1”) => 0x00

hash(“topic2”) => 0x60

Bundle_Key_ Partitions
[Ox00 ,0x40, ,0x80,

Bundle1-1 | Bundle1-2
0x00-0x40 | 0x40-0x80

L\

topic1 topic2

hash(“topic1”) => 0x00

hash(“topic2”) => 0x60

OxXFF]

Understanding Broker Load Balancing

Agenda

Intro: Pulsar Broker Load Balancing
Bundles

Auto Bundle Load Balance Logic
Operation Tips

On-going Work

Q&A

Understanding Broker Load Balancing
Load Balance Metrics: Useful to monitor Load Balance Input / Output

Type

Name

Description

Load Balance Input signal

pulsar_Ib_bandwidth_in_usage

Broker bandwidth in usage % out of 100%

Load Balance Input signal

pulsar_Ib_bandwidth_out_usage

Broker bandwidth out usage % out of 100%

Load Balance Input signal

pulsar_Ib_memory_usage

Broker heap usage % out of 100%

Load Balance Input signal

pulsar_Ib_directMemory usage

Broker dict_memory usage % out of 100%

Load Balance Input signal

Load Balance Unload Output

pulsar_Ib_cpu_usage

pulsar_Ib_unload_bundle_count

Broker cpu usage % out of 100%

Bundle unload counts

Load Balance Unload Output

pulsar_Ib_unload_broker_count

Bundle unload broker counts

Understanding Broker Load Balancing
Load Balance Dashboard

88 Broker Load Balance ¢ <«
pulsar_lb_bandwidth_out_usage

Wt @ @ B Olastéhours
pulsar_lb_bandwidth_in_usage
09:30 10:00 10:30

11:00
== pulsar_lb_bandwidth_out_usage{app="pulsar", broker="pul
= pulsar_lb_bandwidth_out_usage{app="pulsar’, broker="p:

pul

14:30 15:00 09:30 10:00
", “broker’, controller_revision_hash="
3 "broker”, controller_revision_has
pulsar_lb_memory_usage

10:30

11:00 12:30 13:00 13:30
= pulsar_lb_bandwidth_in_usage(app="pulsar’, broker="pt i
== pulsar_lb_bandwidth_in_usage{app="pulsar’, broker="pt ini
pulsar_lb_directMemory_usage
|

14:00
clusterlocal’, clust

14:30 15:00
ulsar-mini", component="broker", controller_revision_hash="puls:
local, cluster="pulsar-mini’, component="broker’, controller_revision_hash="puls

pulsar_lb_cpu_usage
12:00
Ib_memory_usage(app="pulsar’, broker="s

_lb_memory_usage{app="pulsar’, broker="p:

1500

10:00 11:00
luster ocal’, clust
luster ocal’, cluster="pul

== pulsar_lb_directMemory_usage(app="pulsar’, broker="p:
== pulsar_lb_directMemory_usage(app="pulsar’, broker="p i

pulsar_lb_unload_bundle_count

puisar_lb_bundles_split_count

14:00
== pulsar_b_cpu_usage(app="pulsar’, brokef
== pulsar_lb_cpu_usage(app="pulsar’, broker="p
1000 11:00

luster local’, clust
i
12:00

o

pulsar_lb_unload_broker_count
13:00

', cluster="pulsar1
== pulsar_lb_bundles_split_count{app="pulsar’, cluster="pulsar-mini’, component="broker", controller_revision_hash="pulsar-rmis

1400 1500

10:00 11:00 1200 13:00 14:00
== pulsar_lb_unload_bundle_count{app="puls:
pulsar_topics_count

1500
Juster="pulsar-mini", component="broker’, controller_revision_has!

10:00 11:00 1200
“pulsar-m

13:00
== pulsar_lb_unload_broker_count(app="pulsar’, cluster="pulsar-min", component="broker’, controller_revision_hash="pulsar-m

14:00
owned-bundles
09:30 10:00

= ({kubernetes_pod_name="pulsar-

1500
1030 11:00

11:30 12:00
tbroker0') == ({kubemetes_pod_names="pulsar+

09:30 10:00 1030

11:00 11:30 12:00 12:30
= {kubernetes_pod_name="pulsar-mini-broker-0%) == {kubemetes_pod_name="pulsar-minibroker-1'}

Understanding Broker Load Balancing
Useful Admin CLIs to Check Bundle States

1. How to list the bundles in the namespace
bin/pulsar-admin namespaces bundles my-tenant/my-namespace
= "boundaries" : ["0x00000000", "0x10000000", ..., "Oxffffffff"], "numBundles" : 16

2. How to list the topics in the bundle
bin/pulsar-admin topics list my-tenant/my-namespace --bundle 0x00000000_0x10000000
= persistent://my-tenant/my-namespace/my-topic

3. How to look up the bundle by topic
bin/pulsar-admin topics bundle-range persistent://my-tenant/my-namespace/my-topic
= 0x00000000_0%x10000000

4. How to look up the owner broker by topic
bin/pulsar-admin topics lookup persistent://my-tenant/my-namespace/topic
= pulsar://my-broker-1:6650

Understanding Broker Load Balancing
Manual Split and Unload

pulsar_topics_count owned-bundles

10K

||
}-—

Q: Can Admin manually split and unload bundiles?
A: Yes. The unloaded bundles will be reloaded to the next available brokers soon.

Let’s check the CLls for this operations.

Understanding Broker Load Balancing
How to check bundle load stats

How to check bundle load stats
pulsar-admin --admin-url http://my-broker-x-url:8080 broker-stats load-report

=

"bundleStats" : {
"my-tenant/my-namespace/0x80000000_0xc0000000" : {
"msgRateln" : 2100.99
"msgThroughputin® : 2367100.92
"msgRateOut" : 2100.99
"msgThroughputOut"” : 2367100.92
"consumerCount" : 2200,
"producerCount” : 2200,
"topics" : 2300,
"cacheSize" : 107600

Understanding Broker Load Balancing
Manual Split and Unload

1. How to manually split and unload the bundles in the nhamespace
pulsar-admin namespaces split-bundle --bundle 0x80000000_0xc0000000 -san
range_equally_divide -u tenant/namespace

2. How to manually split and unload the largest bundles in the namespace
pulsar-admin namespaces split-bundle -b LARGEST -san topic_count_equally_divide -u
tenant/namespace

3. How to unload a bundle
pulsar-admin namespaces unload tenant/namespace -b 0x80000000_0xc0000000

4. How to unload every bundle in the namespace.
pulsar-admin nhamespaces unload tenant/namespace

Understanding Broker Load Balancing

Agenda

Intro: Pulsar Broker Load Balancing
Bundles

Auto Bundle Load Balance Logic
Operation Tips

On-going Work

Q&A

Understanding Broker Load Balancing
Recent Community Work

More randomized assignment strategy with additional signals
- LearResourceUsageWithWeight, new bundle assignment 16281

Improve input accuracy and output visibility
- Resource usage limit validation and better unload logging(sample non-unload decisions) 16937
- Disregard fluctuating memory when computing load report frequency (less zk overhead) 17598
- Better cgroup cpu usage collection (more accurate cgroup cpu usage) 17820

[PIP-192] Broker Load Balancer Improvement Project (architectural change) 16691

https://github.com/apache/pulsar/pull/16281
https://github.com/apache/pulsar/pull/16937
https://github.com/apache/pulsar/pull/17598
https://github.com/apache/pulsar/pull/17820
https://github.com/apache/pulsar/issues/16691

Understanding Broker Load Balancing
PIP-192: Goals and Proposals

Goal 1: Make auto load balance fault-tolerant, consistent, distributed.

Currently Proposal
Leader globally makes all load balance Each owner broker decides and runs assignment
(assignment/unload/split) decisions and and split logic.

commands each owner broker via RPC with retries.
Leader broker still globally decides unload logic.

RPC — Event-Sourcing : brokers reliability react on
load balance commands from a persistent topic.

Understanding Broker Load Balancing
PIP-192: Goals and Proposals

Goal 2: Efficiently replicate ownership and load data across brokers for high-performance

Currently Proposal

The metadata are persisted in ZK and replicated to For the ownership data, use a persistent topic and
all broker’s in-memory cache(via watcher) replicate to all broker’s in-memory cache(via topic
table-view)

For the load data, use non-persistent topics and
replicate only necessary metrics. (light-weight)

Understanding Broker Load Balancing
PIP-192: Goals and Proposals

Goal 3: Minimize the topic unavailability during unloading

Currently Proposal

When clients tries to look up the new owner broker, Minimize the gap by “transfer”, where the new
they need to go through the bundle assignment owner is pre-assigned.
logic via the leader broker.

Understanding Broker Load Balancing
PIP-192: Goals and Proposals

Goal 4: Provide ways to manually override unload decisions to particular brokers.

Currently Proposal

Not supported. Introduce “--dest” option in the unload admin command, using the new
unload “transfer” behavior.

Understanding Broker Load Balancing

PIP-192: Topics and TableView for load data and bundle ownership store

Long-term Goal:

- Minimize ZK(Metadata store) dependency
ZK dependency discussions

Proposal:

Pulsar already has solutions to replicate
such light-weight KV stores.

Use Topic and TableView to store and
replicate load and bundle ownership data

TN

broker1

pub

Topic

Leader
broker

broker2

“—sub(tableview)

P

sub(tableview

JLUI U\Ll \}

broker3

“Bundle State Channel”.

In PIP-192, the bundle ownership topic is called as

https://github.com/apache/pulsar/issues/572#issue-243298720

release

create unload

assign
(child bundles)

not-owned
discard
(parent bundle)

PIP-192: Bundle State Channel PoC Demo

- Bundle State Channel

- Auto Bundle Assignment
- Auto Bundle Unload

- Manual Bundle Transfer
- Compaction

- Recovery

Understanding Broker Load Balancing

Questions?

