
Improving
Cassandra Client
Load Balancing
Ammar Khaku
Joey Lynch

Ammar Khaku

Senior Software Engineer
Cloud Data Engineering at Netflix

Database clients, Java libraries

Speaker

https://akhaku.com/

https://akhaku.com/

Joey Lynch

Senior Software Engineer
Cloud Data Engineering at Netflix
Cassandra Committer

Database shepherd and data wrangler

Speaker

https://jolynch.github.io/

https://jolynch.github.io/

Outline Load Balancing Background

Why Stateful Load Balancing is Special

Proposed Solution - Weighted Least
Loaded

Experiments and Real World Results

Goal:
Upgrade to
Datastax 4

Had some performance
issues at scale with
LoadBalancer and
Throttler.

(Un)Balance
The
Load

A quick crash
course on
queueing theory
and load balancing

https://www.google.com/books/edition/Performance_Modeling_and_Design_of_Compu/75SbigDGK0kC?hl=en&gbpv=0

HAProxy, Nginx, Envoy
● Weighted Round Robin
● Weighted Least Connection/Load
● Weighted Choice of N (random/hash)

Netflix gRPC: Random Choice of 2

Google uses Random Subsetting with
weighted Round Robin

Many DB clients choose Random

Best in class
implementations

http://www.haproxy.org/
https://www.nginx.com/products/nginx/load-balancing/
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/upstream/load_balancing/load_balancers
https://sre.google/sre-book/load-balancing-datacenter/

What to choose?

https://github.com/jolynch/performance-analysis/blob/master/not
ebooks/queueing_theory/load_balancing_analysis.ipynb

https://github.com/jolynch/performance-analysis/blob/master/notebooks/queueing_theory/load_balancing_analysis.ipynb
https://github.com/jolynch/performance-analysis/blob/master/notebooks/queueing_theory/load_balancing_analysis.ipynb

What to choose?

https://github.com/jolynch/performance-analysis/blob/master/not
ebooks/queueing_theory/load_balancing_analysis.ipynb

Information Free
"Static"

https://github.com/jolynch/performance-analysis/blob/master/notebooks/queueing_theory/load_balancing_analysis.ipynb
https://github.com/jolynch/performance-analysis/blob/master/notebooks/queueing_theory/load_balancing_analysis.ipynb

What to choose?

https://github.com/jolynch/performance-analysis/blob/master/not
ebooks/queueing_theory/load_balancing_analysis.ipynb

"Dynamic" based
on local
knowledge

https://github.com/jolynch/performance-analysis/blob/master/notebooks/queueing_theory/load_balancing_analysis.ipynb
https://github.com/jolynch/performance-analysis/blob/master/notebooks/queueing_theory/load_balancing_analysis.ipynb

What to choose?

https://github.com/jolynch/performance-analysis/blob/master/not
ebooks/queueing_theory/load_balancing_analysis.ipynb

"Dynamic" based
on global
knowledge

https://github.com/jolynch/performance-analysis/blob/master/notebooks/queueing_theory/load_balancing_analysis.ipynb
https://github.com/jolynch/performance-analysis/blob/master/notebooks/queueing_theory/load_balancing_analysis.ipynb

What to choose? HAProxy recommends least
connections as being strictly dominate
to choice of 2 with an efficient impl

This matches the math and literature
absent information.

Google allows servers to communicate
back with clients to adjust weights in
RR. Very clever.

https://www.haproxy.com/blog/power-of-two-load-balancing/
https://www.haproxy.com/blog/power-of-two-load-balancing/
https://sre.google/sre-book/load-balancing-datacenter/

Stateful
Load
Balancing

State makes the
problem different

What makes
datastores
special?

The node you hit matters!

● Postgres: master, replica

● ZooKeeper: leader, followers

● CockroachDB: lease holder

What makes
Cassandra
special?

1. For any piece of data we typically
have one replica per availability zone

2. Depending on the consistency we
may need to hop to more hosts

3. Datastores have hiccups frequently
(drives mostly)

4. Our network latency is asymmetric

Stateful load
balancing
with real
networks

s1

s3

s5

c1 s2

s4

s6

A

B

C

A B C

A 150us 800us 250us

B 800us 220us 850us

C 380us 700us 160us

DataStax Java Driver
for Apache Cassandra®

DataStax Java
Driver 3.x for
Apache
Cassandra®

No Token? Round Robin

Token Aware? Hash key, shuffle
replicas*, return first. (random
subsetting)

Slow to react to slow coordinators,
erroring coordinators, paused
coordinators, etc …

Traffic often goes cross-zone

DataStax Java
Driver 3.x for
Apache
Cassandra®

No Token?
Round Robin

Token Aware?
Hash key, shuffle replicas, return least
loaded between first and second.

Avoids very slow replicas!

Basically choice of 2 over random
subsets! Nice!

DataStax Java
Driver 4.x for
Apache
Cassandra®

DataStax Java
Driver 4.x for
Apache
Cassandra® drop in median write latencies

drop in median read latencies

drop in 95th, 99th write latencies

drop in 95th, 99th read latencies

Perf regression with high-throughput
cases

We needed to do 20k QPS per client to
Cassandra and Datastax 4.x could
barely do 8k.

DataStax Java
Driver 4.x for
Apache
Cassandra®

Pays expensive compare and update
and a lock acquire-release

DataStax Java
Driver 4.x for
Apache
Cassandra®

compare-and-swap in
load balancer

lock in
throttler

Pays expensive compare and update
and a lock acquire-release

DataStax Java
Driver 4.x for
Apache
Cassandra®

DefaultLoadBalancingPolicy#newQueryPlan

Weighted
Least
Loaded

Started with fixing
compare-and-swap,
ended up rewriting the
algorithm

No Token?
Chose 8 random nodes

Token Aware?
Choose all RF replicas and 8-RF random

Weight concurrency by:
!Rack = 4
!Replica = 12
Unhealthy = 64

Sort the sublist. Done!

WLLLB

Stateful load
balancing
with real
networks

s1

s3

s5

c1 s2

s4

s6

A

B

C

A B C

A 150us 800us 250us

B 800us 220us 850us

C 380us 700us 160us

LOCAL_ONE
(Control) s1

s3

s5

c1 s2

s4

s6

A

B

C

set(x=0)
replicas(x) = (s1, s5, s3)

End to End Latency = Latency (L) + Processing (R)

E_LO = ⅓ (L(A, A) + R) + ⅓ (L(A, B) + R) + ⅓ (L(A, C) + R)
Let R = 100us
E_LO = ⅓ (150 + 100) + ⅓ (800 + 100) + ⅓ (250 + 100) = 500us

LOCAL_ONE
(WLLLB) s1

s3

s5

c1 s2

s4

s6

A

B

C

set(x=0)
replicas(x) = (s1, s5, s3)

End to End Latency = Latency (L) + Processing (R)

E_LO = L(A, A) + R
Let R = 100us
E_LO = 150 + 100 = 250us (50% reduction)

LOCAL_QUORUM
(Control) s1

s3

s5

c1 s2

s4

s6

A

B

C

set(x=0)
replicas(x) = (s1, s5, s3)

E_LQ = ⅓ (L(A, A) + min(R, L(A, C) + R))
 ⅓ (L(A, B) + min(R, L(B, A) + R))
 ⅓ (L(A, C) + min(R, L(C, A) + R))

Let R = 100us
E_LQ = ⅓ (150 + 350) + ⅓ (800 + 900) + ⅓ (250 + 480) = 980us

LOCAL_QUORUM
(Control) s1

s3

s5

c1 s2

s4

s6

A

B

C

set(x=0)
replicas(x) = (s1, s5, s3)

E_LQ = ⅓ (L(A, A) + min(R, L(A, C) + R))
 ⅓ (L(A, B) + min(R, L(B, A) + R))
 ⅓ (L(A, C) + min(R, L(C, A) + R))

Let R = 100us
E_LQ = ⅓ (150 + 350) + ⅓ (800 + 900) + ⅓ (250 + 480) = 980us

LOCAL_QUORUM
(WLLLB) s1

s3

s5

c1 s2

s4

s6

A

B

C

set(x=0)
replicas(x) = (s1, s5, s3)

E_LQ = L(A, A) + min(R, L(A, C) + R)

Let R = 100us
E_LQ = 150 + 100 + 250 = 500us (50% reduction)

LOCAL_QUORUM
(WLLLB) s1

s3

s5

c1 s2

s4

s6

A

B

C

set(x=0)
replicas(x) = (s1, s5, s3)

E_LQ = L(A, A) + min(R, L(A, C) + R)

Let R = 100us
E_LQ = 150 + 100 + 250 = 500us (50% reduction)

Experiments

Apply Load
Measure ResultsSynthetic

Traffic

Latency results
LOCAL_ONE

Latency results
LOCAL_ONE

Latency results
LOCAL_ONE

About a 40%
improvement

Latency results
LOCAL_QUORUM

Latency results
LOCAL_QUORUM

Latency results
LOCAL_QUORUM

About a 10%
improvement

Latency results

Why the slight P95 regression in LQ? Theories:

1. Load Imbalance due to asymmetric latency
2. Dynamic Endpoint Snitch

WLLLB
P50/P95/P99
Read (ms)

WLLLB
P50/P95/P99
Write (ms)

Control
P50/P95/P99
Read (ms)

Control
P50/P95/P99
Write (ms)

Read Latency
Difference

Write Latency
Difference

LO-1 0.52/1.30/1.92 0.50/1.30/1.41 0.84/1.45/2.14 0.82/1.35/1.59 38%/10%/10% 39%/4%/11%

LQ-1 1.33/2.42/2.90 1.21/2.15/2.45 1.52/2.25/3.07 1.36/2.06/2.48 12.5/-7.5%/5.6% 11%/-4.3%/1.2%

LQ-2 1.40/2.56/4.45 1.27/2.08/2.46 1.55/2.32/3.93 1.32/2.03/2.47 10%/-10%/-13% 4%/-5%/-1%

Load imbalance
Reads

Load imbalance
Writes

Force packet delay

Measure results
Network
Delay

Linux Traffic
Control (tc)!

$ sudo tc qdisc show dev eth0
qdisc mq 8005: root
qdisc fq 0: parent 8005:4 limit 10000p flow_limit 100p buckets 1024 orphan_mask 1023 quantum 18030
initial_quantum 90150 low_rate_threshold 550Kbit refill_delay 40.0ms
qdisc fq 0: parent 8005:3 limit 10000p flow_limit 100p buckets 1024 orphan_mask 1023 quantum 18030
initial_quantum 90150 low_rate_threshold 550Kbit refill_delay 40.0ms
qdisc fq 0: parent 8005:2 limit 10000p flow_limit 100p buckets 1024 orphan_mask 1023 quantum 18030
initial_quantum 90150 low_rate_threshold 550Kbit refill_delay 40.0ms
qdisc fq 0: parent 8005:1 limit 10000p flow_limit 100p buckets 1024 orphan_mask 1023 quantum 18030
initial_quantum 90150 low_rate_threshold 550Kbit refill_delay 40.0ms

https://man7.org/linux/man-pages/man8/tc.8.html

Netem to the rescue
(tc-netem)

Server adds 10ms delay
server$ sudo tc qdisc replace dev eth0 root netem delay 10ms

Client now observes 10ms additional latency on all requests
client$ ping 100...
…
64 bytes from 100...: icmp_seq=525 ttl=64 time=0.215 ms
64 bytes from 100...: icmp_seq=526 ttl=64 time=0.212 ms
When netem was enabled
64 bytes from 100...: icmp_seq=527 ttl=64 time=10.2 ms
64 bytes from 100...: icmp_seq=528 ttl=64 time=10.2 ms
64 bytes from 100...: icmp_seq=529 ttl=64 time=10.2 ms
64 bytes from 100...: icmp_seq=530 ttl=64 time=10.2 ms

Now Revert on server
server$ sudo tc qdisc replace dev eth0 root mq

https://man7.org/linux/man-pages/man8/tc-netem.8.html

Netem to the rescue
(tc-netem)

You can also use netem to simulate packet loss, corruption,
duplication, reordering and other TCP issues.
For example you could add a distribution of delay with

$ tc qdisc change dev eth0 root netem delay 10ms 4ms distribution normal

https://man7.org/linux/man-pages/man8/tc-netem.8.html

Slow coordinators

Slow coordinators

Limited latency
impact in ⅔ zones

Slow coordinators

1/12 = 8.3%
should have been
affected

But only 1.5%
were

Simulate pauses

Measure results
Garbage
Collection

STOP + CONT

pause.sh
while [1]
do
sudo -u www-data kill -STOP $(pgrep -f CassandraDaemon)
Duration of pause
sleep 20
sudo -u www-data kill -CONT $(pgrep -f CassandraDaemon)
Interval between pauses
sleep 30
done

Slow coordinators

Simulate "GC"
pause via stopping
the Java process.

Slow coordinators

1/12 = 8.3%
should have been
affected

But only .1% were

Apply Real Load
Measure Results

Watch Graphs Drop

Real World
Results

Service #1 - LOCAL_ONE

Read Avg
Read Tail

P50 1.1ms -> 0.7ms = 36% improvement
P95 1.9ms -> 1.4ms = 26% improvement
Local One workload

Service #1 - LOCAL_ONE

Write Avg Write Tail

P50 1.2ms -> 0.7ms = 41% improvement
P95 2.2ms -> 1.7ms = 22% improvement
Local One workload

Service #2 - LOCAL_QUORUM

P50 2.0ms -> 1.6ms = 20% improvement
P95 2.8ms -> 2.2ms = 22% improvement
LWT (Local Serial) workload

Service #3 - LOCAL_ONE

Read Avg

P50 1.6ms -> 1.2ms = 25% improvement
P99 5.0ms -> 4.2ms = 16% improvement
Local one workload

Service #3 - LOCAL_ONE

Write Avg

P50 1.3ms -> 0.9ms = 31% improvement
P99 6.0ms -> 6.0ms = ~0% improvement
Local one workload

Uneven
distribution of
requests across
zones

At Scale?

Peak Traffic is 5 Million Writes per Second

Scale?

Scale?

Peak Traffic is 6 Million Reads per Second

Scale?

Scale?

Conclusions

1. Stay in Zone, failover when loaded

2. LO is easier to load balance for than LQ because we
control the entire flow (snitch impacts LQ)

3. We can simulate slow coordinators, and protect
against them.

WLLLB is widely deployed at Netflix handling over
10M QPS

Q/A

