
Event-driven autoscaling
through Apache Kafka
Source, KEDA, and Knative
Integration

Daniel Oh

danieloh30

@danieloh30

● Developer Advocate at Red Hat
○ Cloud Native Runtimes
○ Serverless, Service Mesh, and GitOps Practices

● CNCF Ambassador
● Advisory Board Member of Global Skill Development

Council
● Opensource.com Correspondents
● Public Speaker & Published Authorbit.ly/danielohtv

Autoscaling Architecture on Kubernetes

Autoscaling Architecture on Kubernetes
w/ External Services

● Project aims to make Kubernetes Event Driven Autoscaling dead simple
● Started as a partnership between Red Hat and Microsoft (Feb 2019)
● Donated into CNCF as a Sandbox project (Mar 2020)
● KEDA 2.0 brought major redesign (Nov 2020)
● Promoting to CNCF Incubation project (Aug 2021)
● KEDA 2.8 has been released recently (Sep 2022)
● https://keda.sh

https://keda.sh/docs/2.8/scalers/

https://keda.sh
https://keda.sh/docs/2.8/scalers/

● Automatically scale Kubernetes Deployments, Jobs & Custom Resources
● Provides 56+ built-in scalers, but users can build own external scalers
● Kafka, Prometheus, RabbitMQ, AWS services, Azure Services,...
● Scale resources based on events in the target scalers, eg. messages in

Kafka topic
● KEDA does not manipulate the data, just scales the workload
● Installation through OLM Operator or Helm

https://keda.sh/docs/2.8/scalers/

https://keda.sh/docs/2.8/scalers/

How does KEDA works?

● KEDA is built on top of Kubernetes
● Use ScaledObject/ScaledJob to define

scaling metadata
● Manages workloads to scale to 0
● Registers itself as k8s Metric Adapter
● Provides metrics for Horizontal Pod

Autoscaler (HPA) to scale on

ScaledObject

● Can target Deployment, StatefulSet or
Custom Resource with scale

● Multiple scalers can be defined as triggers
for the target workload

● User can specify HPA related settings to
tweak the scaling behavior

apiVersion: keda.sh/v1alpha1

kind: ScaledObject

metadata:

 name: example-so

spec:

 scaleTargetRef:

name: example-deployment

 minReplicaCount: 0

 maxReplicaCount: 100

 triggers:

 - type: kafka

 metadata:

bootstrapServers: kafka.svc:9092

consumerGroup: my-group

topic: test-topic

lagThreshold: '5'

How about Serverless
Autoscaling?

● Operates on standard k8s resources
● Can scale existing deployed apps
● Pull based approach
● Doesn’t manage data delivery
● K8s Horizontal Pod Autoscaler (HPA)
● Focus is on event driven autoscaling

● Operates on Knative Service
● Existing apps must be converted
● Push based approach
● Manages data delivery (Eventing)
● Knative Autoscaler
● Demand-based autoscaling (HTTP)

Use Case #1
Application consuming messages from Kafka topic

● Application is deployed as standard
Kubernetes Deployment

● Can be autoscaled only via standard
k8s HPA: CPU & Memory

● No event-driven autoscaling

Kubernetes
Deployment

Application

Consumes
messages

demo

Use Case #2
Redesigned to utilize KEDA

● Application remains the same and is
being deployed the same way

● Event-driven autoscaling enabled
through KEDA

Scales

Kubernetes
Deployment

Application

Consumes
messages

Scrapes
metrics

Kubernetes
Deployment

Application

Kubernetes
Deployment

Application

demo

Use Case #3
Redesigned to utilize Knative

● Application needs to be rewritten from
Kafka consumer to CloudEvents consumer

● Application needs to be redeployed as
Knative Service

● Needs Knative Eventing Kafka Source
● Event-driven autoscaling enabled through

Knative Autoscaler

Consumes
messages

Knative
Eventing

Kafka Source

Knative
Service

Application

Sends
CloudEvents

Monitors load
&

scales

Knative
Service

Application

Knative
Service

Application

demo

How about Serverless
Autoscaling?

Event-driven

Integrate KEDA with
Knative

KEDA and Knative Integration

● KEDA can be used to autoscale Knative Eventing Infrastructure
○ Knative Eventing Sources, Channels
○ Autoscaling allows infrastructure to handle higher loads or save

resources (by scaling to 0) when idle
● KEDA could be potentially used to scale Knative Service, in case users don’t

want to utilize Knative Eventing for event driven workloads (currently not
implemented)

Use Case #4
Redesigned to utilize Knative and KEDA

● Application deployed as Knative
Service and autoscaled by Knative

● Knative Eventing Infrastructure -
Kafka Source is autoscaled by KEDA

Consumes
messages

Knative
Eventing

Kafka Source

Knative
Service

Application

Sends
CloudEvents

Monitors load
&

scales

Knative
Service

Application

Knative
Service

Application

Scrapes
metrics

Knative
Eventing

Kafka Source

Knative
Eventing

Kafka Source

Scales

demo

knative-sandbox/eventing-autoscaler-keda

metadata:

 annotations:

 autoscaling.knative.dev/class: keda.autoscaling.knative.dev

 autoscaling.knative.dev/minScale: "0"

 autoscaling.knative.dev/maxScale: "5"

 keda.autoscaling.knative.dev/pollingInterval: "30"

 keda.autoscaling.knative.dev/cooldownPeriod: "30"

 # Kafka Source

 keda.autoscaling.knative.dev/kafkaLagThreshold: "10"

 # AWS SQS Source

 keda.autoscaling.knative.dev/awsSqsQueueLength: "5"

 # Redis Stream Source

 keda.autoscaling.knative.dev/redisStreamPendingEntriesCount: "5"

● KafkaSource
● AWS SQS Source
● Redis Stream Source
● RabbitMQ Broker

https://github.com/knative-sandbox/eventing-autoscaler-keda

https://github.com/knative-sandbox/eventing-autoscaler-keda

Takeaways

● KEDA - Kubernetes event driven autoscaling dead simple
● KEDA - pull model vs. Knative - push model
● KEDA - Standard Kubernetes resources vs. Knative Service
● KEDA can autoscale Knative Eventing Infrastructure

○ knative-sandbox/eventing-autoscaler-keda

bit.ly/danielohtv

Thank you!
Questions?

