
Towards a Zookeeper-less
Pulsar

David Kjerrumgaard| Developer Advocate

streamnative.io

● Apache Pulsar Committer

● Former Principal Software Engineer on Splunk’s messaging
team that is responsible for Splunk’s internal Pulsar-as-a-
Service platform.

● Former Director of Solution Architecture at Streamlio.

● Global practice director of Professional Services at
Hortonworks.

David Kjerrumgaard
Developer Advocate

streamnative.io

● Author of Pulsar In Action.

● Co-Author of Practical Hive

David Kjerrumgaard
Author

https://streamnative.io/download/manning-ebook-apache-pulsar-in-action

streamnative.io

Pulsar and Metadata

streamnative.io

Pulsar Cluster Overview

streamnative.io

The Data Path

streamnative.io

The Metadata Path

streamnative.io

Geo-Replication

streamnative.io

Pulsar’s Metadata

streamnative.io

Categories of Metadata

streamnative.io

Pointers To Data

● Each persistent topic is
associated with an ordered
list of ledgers known as a
managed ledger.

● Each BookKeeper ledger
has associated metadata
that tracks the state of the
ledger, and which bookies
have a replica.

Managed Ledgers Ledger Metadata

streamnative.io

Managed Ledger
● An append-only list of

ledger IDs that hold the
topic’s data.

● Only updated when a
segment rolls-over, e.g.,
once every 50k entries or
4 hours.

streamnative.io

The Managed Ledger
● Stored inside ZK in a hierarchical manner e.g.,

● /managed-ledgers/<tenant>/<ns>/persistent/<topic>

● Administered via ./bin/pulsar-managed-ledger-admin

● Examine the data using ./bin/pulsar-admin topics info-
internal $TOPIC

streamnative.io

Managed Ledger Example
{ "ledgers" :

[{"ledgerId":1234,"entries":1000,"size":433111,"offloaded":false},
{"ledgerId":5579,"entries":50000,"size":9433111,"offloaded":false}
. . .

],
"schemaLedgers":[],
"compactedLedger":

{"ledgerId":-1,"entries":-1,"size":-1,"offloaded": false}
}

streamnative.io

Ledger Metadata
● Tracks the state of the

ledger, and which
bookies have a replica.

● New entry added only
when a segment rolls-
over, e.g., once every 50k
entries or 4 hours.

streamnative.io

Ledger Metadata
● Stored inside ZK in a hierarchical manner e.g.,

● /ledgers/00

● Administered via ./bin/bookkeeper shell

● Examine the data using ./bin/bookkeeper shell
ledgermetadata -ledgerid <LEDGER-ID>

streamnative.io

Ledger Metadata Example
LedgerMetadata{ formatVersion=3, ensembleSize=2,

writeQuorumSize=2, ackQuorumSize=2, state=CLOSED,
length=1738964, lastEntryId=1611,
digestType=CRC32C, password=base64:,
ensembles={

0=[bookie-1:3181, bookie-2:3181],
1000=[bookie-5:3181, bookie-2:3181]

},
customMetadata={

component=base64:bWFuYWdlZC1sZWRnZXI=,
pulsar/managed-ledger=base64:cHVibGlR=,
application=base64:cHVsc2Fy

}
}

streamnative.io

Service Discovery

● Find available bookies.
● Which bookies are in read-

only mode?

● Find available brokers
● Discover which broker owns a

particular topic
● What is the current load on

each broker?

Bookies Brokers

streamnative.io

Available Brokers
ls /loadbalance/brokers

[pulsar-full-broker-0.pulsar-full-
broker.pulsar.svc.cluster.local:8080, pulsar-full-broker-
1.pulsar-full-broker.pulsar.svc.cluster.local:8080]

streamnative.io

Broker Assignment
get /namespace/public/default/0x80000000_0x90000000

{"nativeUrl":"pulsar://pulsar-full-broker-1.pulsar-full-
broker.pulsar.svc.cluster.local:6650","httpUrl":"http://puls
ar-full-broker-1.pulsar-full-
broker.pulsar.svc.cluster.local:8080","disabled":false,"adve
rtisedListeners":{}}

streamnative.io

Current Broker Load
get /loadbalance/broker-time-average/pulsar-full-broker-
0.pulsar-full-broker.pulsar.svc.cluster.local:8080

{"shortTermMsgThroughputIn":0.0,"shortTermMsgThroughputOut":
0.0,"shortTermMsgRateIn":0.0,"shortTermMsgRateOut":0.0,"long
TermMsgThroughputIn":0.0,"longTermMsgThroughputOut":0.0,"lon
gTermMsgRateIn":0.0,"longTermMsgRateOut":0.0}

streamnative.io

Current Bundle Load
get /loadbalance/bundle-data/public/default/0x20000000_0x30000000

{"shortTermData":{"maxSamples":10,"numSamples":10,"msgThroughputIn"
:62.25184125922071,"msgThroughputOut":7.604885254629465E-
11,"msgRateIn":0.05775803401940914,"msgRateOut":1.768577966192899E-
12},"longTermData":{"maxSamples":1000,"numSamples":234,"msgThroughp
utIn":920.1840888229265,"msgThroughputOut":0.057750359730717925,"ms
gRateIn":0.8537582637120998,"msgRateOut":0.0013430316216446019},"to
pics":1}

streamnative.io

System Configuration
● Allow for dynamic settings
● Features can be activated/deactivated without restarting brokers
● Keep isolation information
● Maintain tracking of (bookie -> rack) mapping

streamnative.io

System Policies
get /admin/policies/pulsar/system

{"auth_policies":{"namespace_auth":{},"destination_auth":{},"subscription_auth_roles":{}}
,"replication_clusters":["pulsar-
full"],"bundles":{"boundaries":["0x00000000","0x10000000","0x20000000","0x30000000","0x40
000000","0x50000000","0x60000000","0x70000000","0x80000000","0x90000000","0xa0000000","0x
b0000000","0xc0000000","0xd0000000","0xe0000000","0xf0000000","0xffffffff"],"numBundles":
16},"backlog_quota_map":{},"clusterDispatchRate":{},"topicDispatchRate":{},"subscriptionD
ispatchRate":{},"replicatorDispatchRate":{},"clusterSubscribeRate":{},"publishMaxMessageR
ate":{},"latency_stats_sample_rate":{},"deleted":false,"encryption_required":false,"subsc
ription_auth_mode":"None","offload_threshold":-
1,"schema_compatibility_strategy":"UNDEFINED","schema_validation_enforced":false,"subscri
ption_types_enabled":[],"properties":{}}

streamnative.io

Provisioning Configuration
● Metadata for Tenants, Namespaces
● Policies to apply to namespaces
● Authorization definitions
● Highly-Cacheable metadata

streamnative.io

Namespace Policies
get /admin/policies/public/default

{"auth_policies":{"namespace_auth":{},"destination_auth":{},"subscription_auth_roles":{}}
,"replication_clusters":["pulsar-
full"],"bundles":{"boundaries":["0x00000000","0x10000000","0x20000000","0x30000000","0x40
000000","0x50000000","0x60000000","0x70000000","0x80000000","0x90000000","0xa0000000","0x
b0000000","0xc0000000","0xd0000000","0xe0000000","0xf0000000","0xffffffff"],"numBundles":
16},"backlog_quota_map":{"destination_storage":{"limit":-1,"limitSize":-1,"limitTime":-
1,"policy":"producer_request_hold"}},"clusterDispatchRate":{},"topicDispatchRate":{},"sub
scriptionDispatchRate":{},"replicatorDispatchRate":{},"clusterSubscribeRate":{},"publishM
axMessageRate":{},"latency_stats_sample_rate":{},"deleted":false,"encryption_required":fa
lse,"subscription_auth_mode":"None","offload_threshold":-
1,"schema_compatibility_strategy":"UNDEFINED","schema_validation_enforced":false,"subscri
ption_types_enabled":[],"properties":{}}

streamnative.io

Distributed Coordination
● Acquire a lock over a particular resource

● Ownership of group of topics

● Signaling that some work on a particular resource is in progress

● BK auto-recovery

● Leader election

● Establish a single leader designed to perform some tasks

● Load manager designates a leader that

● Failover to other available nodes

streamnative.io

What’s up with
Zookeeper?

streamnative.io

Apache Zookeeper

● Consensus based “database”; data is replicated consistently to a
quorum of nodes.

● It is not horizontally scalable; increasing the ZK cluster size does not
increase the write capacity!

● All data is kept in memory in every node - Not very GC friendly

● It takes periodic snapshots of the entire dataset.

streamnative.io

Apache Zookeeper Issues
● The amount of metadata that can be stored in ZK is ~5GB

● Tuning and operating ZK to work with big datasets is not trivial.

● Requires deep knowledge of ZK internals.

● In cloud and containerized environments, leader election can
sometime take few minutes due to:

● Issues with DNS, software-defined-networking and sidecar TCP proxies.

streamnative.io

Reasons to remove Zookeeper
● Big clusters → we don’t want to have a hard limit of the amount of

metadata

● A horizontally scalable metadata store is more suited

● Small clusters → remove overhead of running ZK

● Less components to deploy

● Easier operations

streamnative.io

PIP-45

A Multi-step Plan

streamnative.io

Design Decisions
● Let’s not implement directly in Pulsar brokers
● Let’s not rewrite Paxos/Raft again
● Assume the facilities of a cloud-native environment
● Design for auto-tuning, from tiny to huge without admin

intervention

streamnative.io

● Instead of direct usage of ZooKeeper APIs, we have abstracted all
the accesses through a single generic API.

● This API has multiple implementations:

● ZooKeeper

● Etcd

● RocksDB (for standalone)

● Memory (for unit tests)

Pluggable Metadata Backend

streamnative.io

Pluggable Metadata Backends

streamnative.io

Metadata Semantics
● We have identified 2 main patterns of access to the metadata

● Simple key-value access + notifications

● Complex coordination

streamnative.io

Key-Value Access
● MetadataStore → Key-value store access

● put() – get() – delete()

● Values are byte[]

● Users can register for notifications

● MetadataCache → Object cache on top of MetadataStore

streamnative.io

Coordination Services
● Contains primitives for “cluster coordination”
● High-level API that hides all the complexities

● ResourceLock – Distributed lock over a shared resource

● LeaderElection – Elect a leader among a set of peers

● DistributedCounter – Generate unique IDs

streamnative.io

Metadata Store
Administration

streamnative.io

Configuration
● The metadata store of each Pulsar instance should contain the

following two components:

● A local metadata store ensemble (metadataStoreUrl) that stores cluster-specific
configuration and coordination, such as which brokers are responsible for which
topics as well as ownership metadata, broker load reports, and BookKeeper
ledger metadata.

● A configuration store quorum (configurationMetadataStoreUrl) stores
configuration for clusters, tenants, namespaces, topics, and other entities that
need to be globally consistent.

streamnative.io

ZooKeeper as the Metadata Store
● Pulsar metadata store can be deployed on a separate ZooKeeper

cluster or deployed on an existing ZooKeeper cluster.

● Add the following parameters to the conf/broker.conf or
conf/standalone.conf file.

metadataStoreUrl=zk:my-zk-1:2181,my-zk-2:2181,my-zk-3:2181

configurationMetadataStoreUrl=zk:my-global-zk-1:2181,my-
global-zk-2:2181,my-global-zk-3:2181

streamnative.io

Etcd as the Metadata Store
● Pulsar metadata store can be deployed on an existing Etcd cluster.

● Add the following parameters to the conf/broker.conf or
conf/standalone.conf file.

metadataStoreUrl=etcd:http://my-etcd-1:2379,http://my-etcd-
2:2379,http://my-etcd-3:2379

configurationMetadataStoreUrl=etcd:my-global-etcd-1:2379,my-
global-etcd-2:2379,my-global-etcd-3:2379

metadataStoreConfigPath=/path/to/file

streamnative.io

Etcd – cont.
● The metadataStoreConfigPath parameter is required when you

want to use the following advanced configurations.

useTls=false
tlsProvider=JDK
tlsTrustCertsFilePath=
tlsKeyFilePath=
tlsCertificateFilePath=
authority=

streamnative.io

RocksDB as the Metadata Store
● Pulsar metadata store can be deployed on a new or existing

RocksDB database.

● Add the following parameters to the conf/broker.conf or
conf/standalone.conf file.

metadataStoreUrl=rocksdb://data/metadata
metadataStoreConfigPath=/path/to/file

streamnative.io

RockDB – cont.
● The metadataStoreConfigPath parameter is required when you

want to use advanced configurations.

[DBOptions]
stats_dump_period_sec=600
max_manifest_file_size=18446744073709551615
bytes_per_sync=8388608
delayed_write_rate=2097152
WAL_ttl_seconds=0
WAL_size_limit_MB=0
max_subcompactions=1

streamnative.io

In-Memory Metadata Store
● Pulsar metadata store can be be hosted in local memory for things

like unit testing, etc.

● Add the following parameters to the conf/broker.conf or
conf/standalone.conf file.

metadataStoreUrl=memory://local

streamnative.io

Successes Enabled
In

Pulsar 2.10

streamnative.io

Metadata Session Revalidation
When we lose a ZooKeeper session (or similarly an Etcd lease), we can
re-validate it later, without having to restart Pulsar brokers.

This is a major cluster stability improvement.

streamnative.io

Batching of Metadata
● All the metadata read and write operations are happening through

a single access point

● Accumulate operations into a queue and use underlying API for
bulk access (e.g.: ZK “multi” or Etcd transactions)

● This is a major improvement in metadata throughput

streamnative.io

Increased Metadata Writes

streamnative.io

Increased Metadata Reads

streamnative.io

Configuring Batching
● To enable batch operations on the metadata store, you can

configure the following parameters in the conf/broker.conf or
conf/standalone.conf file.

Whether we should enable metadata operations batching
metadataStoreBatchingEnabled=true

Maximum delay to impose on batching grouping
metadataStoreBatchingMaxDelayMillis=5

Maximum number of operations to include in a singular batch
metadataStoreBatchingMaxOperations=1000

Maximum size of a batch
metadataStoreBatchingMaxSizeKb=128

streamnative.io

What’s Next?

streamnative.io

Goals for the Metadata Service
● Transparent horizontal scalability
● Ease of operations (add/remove nodes)
● No need for global linearizable history
● Scale up to 100 GB of total data set
● Read - Write rates scalable to ~1M ops/s
● Latency target: reads 99pct < 5ms — writes 99pct < 20ms

streamnative.io

Expected Results
● The ultimate goal is to achieve a 10x increase in number of topics in

a cluster
● A small Pulsar cluster should be able to support millions of topics
● Handling of metadata is the biggest obstacle
● It’s not the only factor though. We are also working on metrics,

lookups, overhead of single topic and global memory limits

streamnative.io

Thanks for attending!

Scan the QR Code to learn

more about Apache Pulsar.

streamnative.io

Now Available

On-Demand
Pulsar Training

Academy.StreamNative.io

streamnative.io

We’re Hiring
streamnative.io/careers/

streamnative.io

Questions

Let’s Keep
in Touch!

David Kjerrumgaard
Developer Advocate

@Dkjerrumg1

https://www.linkedin.com/davidkj

https://github.com/david-streamlio

https://github.com/tspannhw

