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Pulsar and Metadata
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Pulsar Cluster Overview
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The Data Path
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The Metadata Path
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Geo-Replication



streamnative.io

Pulsar’s Metadata
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Categories of Metadata 
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Pointers To Data

● Each persistent topic is 
associated with an ordered 
list of ledgers known as a 
managed ledger.

● Each BookKeeper ledger 
has associated metadata 
that tracks the state of the 
ledger, and which bookies 
have a replica.

Managed Ledgers Ledger Metadata
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Managed Ledger
● An append-only list of 

ledger IDs that hold the 
topic’s data.

● Only updated when a 
segment rolls-over, e.g., 
once every 50k entries or 
4 hours.
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The Managed Ledger
● Stored inside ZK in a hierarchical manner e.g.,

● /managed-ledgers/<tenant>/<ns>/persistent/<topic>

● Administered via ./bin/pulsar-managed-ledger-admin

● Examine the data using ./bin/pulsar-admin topics info-
internal $TOPIC
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Managed Ledger Example
{ "ledgers" : 

[{"ledgerId":1234,"entries":1000,"size":433111,"offloaded":false}, 
{"ledgerId":5579,"entries":50000,"size":9433111,"offloaded":false}
. . .

],
"schemaLedgers":[],
"compactedLedger":

{"ledgerId":-1,"entries":-1,"size":-1,"offloaded": false}
}
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Ledger Metadata
● Tracks the state of the 

ledger, and which 
bookies have a replica.

● New entry added only 
when a segment rolls-
over, e.g., once every 50k 
entries or 4 hours.



streamnative.io

Ledger Metadata
● Stored inside ZK in a hierarchical manner e.g.,

● /ledgers/00

● Administered via ./bin/bookkeeper shell

● Examine the data using ./bin/bookkeeper shell 
ledgermetadata -ledgerid <LEDGER-ID>
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Ledger Metadata Example
LedgerMetadata{ formatVersion=3, ensembleSize=2, 

writeQuorumSize=2, ackQuorumSize=2, state=CLOSED, 
length=1738964, lastEntryId=1611,
digestType=CRC32C, password=base64:,
ensembles={ 

0=[bookie-1:3181, bookie-2:3181], 
1000=[bookie-5:3181, bookie-2:3181] 

},
customMetadata={

component=base64:bWFuYWdlZC1sZWRnZXI=,
pulsar/managed-ledger=base64:cHVibGlR=,
application=base64:cHVsc2Fy

}
}
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Service Discovery

● Find available bookies.
● Which bookies are in read-

only mode?

● Find available brokers
● Discover which broker owns a 

particular topic
● What is the current load on 

each broker?

Bookies Brokers
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Available Brokers
ls /loadbalance/brokers

[pulsar-full-broker-0.pulsar-full-
broker.pulsar.svc.cluster.local:8080, pulsar-full-broker-
1.pulsar-full-broker.pulsar.svc.cluster.local:8080]
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Broker Assignment
get /namespace/public/default/0x80000000_0x90000000

{"nativeUrl":"pulsar://pulsar-full-broker-1.pulsar-full-
broker.pulsar.svc.cluster.local:6650","httpUrl":"http://puls
ar-full-broker-1.pulsar-full-
broker.pulsar.svc.cluster.local:8080","disabled":false,"adve
rtisedListeners":{}}
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Current Broker Load
get /loadbalance/broker-time-average/pulsar-full-broker-
0.pulsar-full-broker.pulsar.svc.cluster.local:8080

{"shortTermMsgThroughputIn":0.0,"shortTermMsgThroughputOut":
0.0,"shortTermMsgRateIn":0.0,"shortTermMsgRateOut":0.0,"long
TermMsgThroughputIn":0.0,"longTermMsgThroughputOut":0.0,"lon
gTermMsgRateIn":0.0,"longTermMsgRateOut":0.0}
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Current Bundle Load
get /loadbalance/bundle-data/public/default/0x20000000_0x30000000

{"shortTermData":{"maxSamples":10,"numSamples":10,"msgThroughputIn"
:62.25184125922071,"msgThroughputOut":7.604885254629465E-
11,"msgRateIn":0.05775803401940914,"msgRateOut":1.768577966192899E-
12},"longTermData":{"maxSamples":1000,"numSamples":234,"msgThroughp
utIn":920.1840888229265,"msgThroughputOut":0.057750359730717925,"ms
gRateIn":0.8537582637120998,"msgRateOut":0.0013430316216446019},"to
pics":1}
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System Configuration
● Allow for dynamic settings
● Features can be activated/deactivated without restarting brokers
● Keep isolation information
● Maintain tracking of (bookie -> rack) mapping
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System Policies
get /admin/policies/pulsar/system

{"auth_policies":{"namespace_auth":{},"destination_auth":{},"subscription_auth_roles":{}}
,"replication_clusters":["pulsar-
full"],"bundles":{"boundaries":["0x00000000","0x10000000","0x20000000","0x30000000","0x40
000000","0x50000000","0x60000000","0x70000000","0x80000000","0x90000000","0xa0000000","0x
b0000000","0xc0000000","0xd0000000","0xe0000000","0xf0000000","0xffffffff"],"numBundles":
16},"backlog_quota_map":{},"clusterDispatchRate":{},"topicDispatchRate":{},"subscriptionD
ispatchRate":{},"replicatorDispatchRate":{},"clusterSubscribeRate":{},"publishMaxMessageR
ate":{},"latency_stats_sample_rate":{},"deleted":false,"encryption_required":false,"subsc
ription_auth_mode":"None","offload_threshold":-
1,"schema_compatibility_strategy":"UNDEFINED","schema_validation_enforced":false,"subscri
ption_types_enabled":[],"properties":{}}
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Provisioning Configuration
● Metadata for Tenants, Namespaces
● Policies to apply to namespaces
● Authorization definitions
● Highly-Cacheable metadata
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Namespace Policies
get /admin/policies/public/default

{"auth_policies":{"namespace_auth":{},"destination_auth":{},"subscription_auth_roles":{}}
,"replication_clusters":["pulsar-
full"],"bundles":{"boundaries":["0x00000000","0x10000000","0x20000000","0x30000000","0x40
000000","0x50000000","0x60000000","0x70000000","0x80000000","0x90000000","0xa0000000","0x
b0000000","0xc0000000","0xd0000000","0xe0000000","0xf0000000","0xffffffff"],"numBundles":
16},"backlog_quota_map":{"destination_storage":{"limit":-1,"limitSize":-1,"limitTime":-
1,"policy":"producer_request_hold"}},"clusterDispatchRate":{},"topicDispatchRate":{},"sub
scriptionDispatchRate":{},"replicatorDispatchRate":{},"clusterSubscribeRate":{},"publishM
axMessageRate":{},"latency_stats_sample_rate":{},"deleted":false,"encryption_required":fa
lse,"subscription_auth_mode":"None","offload_threshold":-
1,"schema_compatibility_strategy":"UNDEFINED","schema_validation_enforced":false,"subscri
ption_types_enabled":[],"properties":{}}
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Distributed Coordination
● Acquire a lock over a particular resource

● Ownership of group of topics

● Signaling that some work on a particular resource is in progress

● BK auto-recovery

● Leader election

● Establish a single leader designed to perform some tasks

● Load manager designates a leader that 

● Failover to other available nodes
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What’s up with 
Zookeeper?
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Apache Zookeeper

● Consensus based “database”; data is replicated consistently to a 
quorum of nodes.

● It is not horizontally scalable; increasing the ZK cluster size does not
increase the write capacity!

● All data is kept in memory in every node - Not very GC friendly

● It takes periodic snapshots of the entire dataset.
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Apache Zookeeper Issues
● The amount of metadata that can be stored in ZK is ~5GB

● Tuning and operating ZK to work with big datasets is not trivial.

● Requires deep knowledge of ZK internals.

● In cloud and containerized environments, leader election can 
sometime take few minutes due to:

● Issues with DNS, software-defined-networking and sidecar TCP proxies.
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Reasons to remove Zookeeper
● Big clusters →  we don’t want to have a hard limit of the amount of 

metadata

● A horizontally scalable metadata store is more suited

● Small clusters → remove overhead of running ZK

● Less components to deploy

● Easier operations
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PIP-45

A Multi-step Plan
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Design Decisions
● Let’s not implement directly in Pulsar brokers
● Let’s not rewrite Paxos/Raft again
● Assume the facilities of a cloud-native environment
● Design for auto-tuning, from tiny to huge without admin 

intervention
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● Instead of direct usage of ZooKeeper APIs, we have abstracted all 
the accesses through a single generic API.

● This API has multiple implementations:

● ZooKeeper

● Etcd

● RocksDB (for standalone)

● Memory (for unit tests)

Pluggable Metadata Backend
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Pluggable Metadata Backends
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Metadata Semantics
● We have identified 2 main patterns of access to the metadata

● Simple key-value access + notifications

● Complex coordination
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Key-Value Access
● MetadataStore → Key-value store access

● put() – get() – delete()

● Values are byte[]

● Users can register for notifications

● MetadataCache → Object cache on top of MetadataStore
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Coordination Services
● Contains primitives for “cluster coordination”
● High-level API that hides all the complexities

● ResourceLock – Distributed lock over a shared resource

● LeaderElection – Elect a leader among a set of peers

● DistributedCounter – Generate unique IDs 
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Metadata Store
Administration
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Configuration
● The metadata store of each Pulsar instance should contain the 

following two components:

● A local metadata store ensemble (metadataStoreUrl) that stores cluster-specific 
configuration and coordination, such as which brokers are responsible for which 
topics as well as ownership metadata, broker load reports, and BookKeeper 
ledger metadata.

● A configuration store quorum (configurationMetadataStoreUrl) stores 
configuration for clusters, tenants, namespaces, topics, and other entities that 
need to be globally consistent.
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ZooKeeper as the Metadata Store
● Pulsar metadata store can be deployed on a separate ZooKeeper 

cluster or deployed on an existing ZooKeeper cluster.

● Add the following parameters to the conf/broker.conf or 
conf/standalone.conf file.

metadataStoreUrl=zk:my-zk-1:2181,my-zk-2:2181,my-zk-3:2181

configurationMetadataStoreUrl=zk:my-global-zk-1:2181,my-
global-zk-2:2181,my-global-zk-3:2181
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Etcd as the Metadata Store
● Pulsar metadata store can be deployed on an existing Etcd cluster.

● Add the following parameters to the conf/broker.conf or 
conf/standalone.conf file.

metadataStoreUrl=etcd:http://my-etcd-1:2379,http://my-etcd-
2:2379,http://my-etcd-3:2379

configurationMetadataStoreUrl=etcd:my-global-etcd-1:2379,my-
global-etcd-2:2379,my-global-etcd-3:2379

# metadataStoreConfigPath=/path/to/file



streamnative.io

Etcd – cont.
● The metadataStoreConfigPath parameter is required when you 

want to use the following advanced configurations.

useTls=false
tlsProvider=JDK
tlsTrustCertsFilePath=
tlsKeyFilePath=
tlsCertificateFilePath=
authority=
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RocksDB as the Metadata Store
● Pulsar metadata store can be deployed on a new or existing 

RocksDB database.

● Add the following parameters to the conf/broker.conf or 
conf/standalone.conf file.

metadataStoreUrl=rocksdb://data/metadata
# metadataStoreConfigPath=/path/to/file
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RockDB – cont.
● The metadataStoreConfigPath parameter is required when you 

want to use advanced configurations.

[DBOptions]
stats_dump_period_sec=600
max_manifest_file_size=18446744073709551615
bytes_per_sync=8388608
delayed_write_rate=2097152
WAL_ttl_seconds=0
WAL_size_limit_MB=0
max_subcompactions=1
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In-Memory Metadata Store
● Pulsar metadata store can be be hosted in local memory for things 

like unit testing, etc.

● Add the following parameters to the conf/broker.conf or 
conf/standalone.conf file.

metadataStoreUrl=memory://local
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Successes Enabled
In

Pulsar 2.10
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Metadata Session Revalidation
When we lose a ZooKeeper session (or similarly an Etcd lease), we can 
re-validate it later, without having to restart Pulsar brokers.

This is a major cluster stability improvement.
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Batching of Metadata
● All the metadata read and write operations are happening through 

a single access point

● Accumulate operations into a queue and use underlying API for 
bulk access (e.g.: ZK “multi” or Etcd transactions)

● This is a major improvement in metadata throughput
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Increased Metadata Writes
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Increased Metadata Reads
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Configuring Batching
● To enable batch operations on the metadata store, you can 

configure the following parameters in the conf/broker.conf or 
conf/standalone.conf file.

# Whether we should enable metadata operations batching
metadataStoreBatchingEnabled=true

# Maximum delay to impose on batching grouping
metadataStoreBatchingMaxDelayMillis=5

# Maximum number of operations to include in a singular batch
metadataStoreBatchingMaxOperations=1000

# Maximum size of a batch
metadataStoreBatchingMaxSizeKb=128
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What’s Next?
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Goals for the Metadata Service
● Transparent horizontal scalability
● Ease of operations (add/remove nodes)
● No need for global linearizable history
● Scale up to 100 GB of total data set
● Read - Write rates scalable to ~1M ops/s
● Latency target: reads 99pct < 5ms — writes 99pct < 20ms
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Expected Results
● The ultimate goal is to achieve a 10x increase in number of topics in 

a cluster
● A small Pulsar cluster should be able to support millions of topics
● Handling of metadata is the biggest obstacle
● It’s not the only factor though. We are also working on metrics, 

lookups, overhead of single topic and global memory limits
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Thanks for attending! 

Scan the QR Code to learn 

more about Apache Pulsar. 
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Now Available

On-Demand
Pulsar Training 

Academy.StreamNative.io
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We’re Hiring
streamnative.io/careers/
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Questions



Let’s Keep
in Touch!

David Kjerrumgaard
Developer Advocate

@Dkjerrumg1

https://www.linkedin.com/davidkj

https://github.com/david-streamlio

https://github.com/tspannhw

