
PUBLICWho am I?

1

How It Started

How It’s Going

I got my first programming job while I was still in high school and it was writing C++ 
code for a XENIX system connected to a Xerox high-speed laser printer. That was 
1992 

At the turn of the millennium I was working for tech start-ups using PHP and Java and 
Linux, where I first started collaborating with the Open Source community.

Since then, I have expanded my experience to be a contributor to Apache Camel, 
Eclipse Vert.x, and Quarkus among many other open source projects.

So, 30 years of experience in the industry and I still learn tons of new things every 
day, and I hope each of you do as well. It’s one of my favorite parts of this job!



PUBLIC

Application Servers are 
expensive and we cannot 
innovate as quickly…

2

Hopefully by understanding a little about my background, you’ll be more open to 
understand why I am so excited about what is changing in our industry over the last 
decade.



PUBLIC

SOA is dead, nobody 
does Enterprise Service 
Bus anymore, but 
integration needs remain

3

When was the last time you had someone talk about SOA or ESBs? More likely you 
hear about Lambda and Step Functions, but orchestrating a large number of functions 
can be difficult and add lots of operational overhead. Yet, we still need a way to 
connect disparate systems, exchange and transform data, handle events, and more… 
Is there a way we can leverage what’s good about modern cloud capabilities without 
giving up what was great about application server platforms like Karaf, ServiceMix, 
OSGi, etc…?



PUBLIC

Supersonic, Subatomic Integration

Apache Camel & Quarkus

Deven Phillips

Senior Architect

Runtimes Practice
4

I’d like to suggest that Apache Camel using the Quarkus runtime could be just the 
solution which balances those value propositions… Especially when you deploy using 
a container runtime like Kubernetes where you can have lots of scheduling and 
deployment flexibility while retaining the centrally configured simplifications of legacy 
application servers.



PUBLIC

5

Kubernetes is the Enterprise Application Server for the 
Containerized world

Unpopular Opinion….

Centrally controlled security policies Centrally controlled security policies

SSL/TLS offloading SSL/TLS Offloading

Centrally controlled configuration and secrets Centrally controlled configuration and secrets

Centralized observability Centralized observability

Scaling, clustering, load balancing Scaling, clustering, load balancing

Service discovery Service discovery

Many of you might say “But, Kubernetes is so much more than . . . “ Sure, but so were 
app servers… Most organizations failed to make use of all of the capabilities of their 
app servers and still do to this day. The main difference between app servers and 
Kubernetes is added flexibility… We can run any language, any framework, and we 
can be more granular in our scheduling of CPU, memory, and storage resources. 



PUBLIC

6

Apache Camel Evolves

Apache Camel Evolves Camel today is the same 

as it always has been from 

a developer perspective.

What has changed is the 

underlying complexity 

hidden behind the simple 

APIs and DSLs of Camel



PUBLICApache Camel Evolves

7

Slow and steady innovation in 
products is generally more 
sustainable than big bang 
disruption

Source:
https://www.openaccessgovernment.org/why-slow-and-steady-wins-the-innovation-race/113605/ 

Projects like Apache Camel are a wonderful example of this concept. Apache Camel 
doesn’t change massively in large burst, but slowly and steadily while allowing it’s 
users to adopt new features as they are able. Disruption in the industry typically 
means that the development teams currently using one solution have to stop work for 
a time and learn an entirely new paradigm before they can begin to be productive 
again. 

https://www.openaccessgovernment.org/why-slow-and-steady-wins-the-innovation-race/113605/


PUBLICApache Camel Evolves

8

ANIMATED: Another thing which is important to keep in mind is that Apache Camel 
really isn’t changing, it is just adapting to a new and arguably better runtime.

Camel in the old days on ServiceMix/OSGi was limited to thread pools

It Evolved to run on top of Wildfly, which was still limited to Thread Pools

Then onto Spring and Tomcat which is also limited by thread pools

But with Quarkus, we are operating on top of a stack which is completely 
non-blocking from top to bottom. Starting with NIO.2, with Netty, and Vert.x, there are 
such fewer limitations on how we process.



PUBLIC

9

Quarkus Overview

Quarkus Overview



PUBLICApache Camel Evolves

10

Source:
https://quarkus.io/ 

But sometimes it feels like these evolving and iterative innovations hit a critical mass 
and lots of things improve by a large amount and though it is a major change, it is not 
disruptive. This is how I see Camel on Quarkus. We get to use Camel in pretty much 
the same ways we always have, but we get to benefit from all of the evolution and 
innovation which has summed up into this new option. We get faster start times, lower 
memory footprints, better developer experiences, and more. It’s the culmination of a 
number of different key technologies evolving and integrating to result in a major 
improvement.

https://quarkus.io/


PUBLICQuarkus Overview

11

Source:
https://quarkus.io/ 

Quarkus brings a lot of the same capabilities we are used to in traditional Java 
development. Dependency Injection is handled automatically with CDI, we have 
access to the same Java libraries and ecosystems. The difference is that we have 
used those traditional interfaces and functionalities as a facade on top of a truly 
innovative runtime based on Eclipse Vert.x. Instead of the traditional thread and 
blocking I/O approach which underpins most of our existing technologies, Quarkus 
replaces the underlying I/O with a fully reactive toolkit but at the same time abstracts 
that complexity away from us behind the facade of familiar APIs. In addition, new 
features like live-reloading, DevServices, and native-image support allow us to be 
more productive with less effort.

https://quarkus.io/


PUBLIC

12

Apache Camel Quarkus

Apache Camel Quarkus The Apache Camel 

components and APIs that 

you already know and love 

running on a 

next-generation and 

future-facing runtime



PUBLICApache Camel Quarkus

13
Source:
https://quarkus.io/ 
https://quarkus.io/blog/quarkus-2-10-0-final-released/ 

Starting with Netty, which is a nice and lightweight abstraction on top of Java’s NIO.2 
APIs for non-blocking I/O operations.

Further improved by Eclipse Vert.x which gives us all of tools for a fully reactive Java 
application

Layer on Quarkus which presents a familiar and comfortable programming model 
based on JakartaEE Microprofile

And to go completely reactive it supports SmallRye Mutinty as a simplified experience 
for reactive streams.

All of this, and the underlying runtime is already providing support for the forthcoming 
Project Loom Virtual Threads.

This means that you are running on an extremely fast and efficient runtime today and 
ready to automatically take advantage of evolving features of the JVM tomorrow.

https://quarkus.io/
https://quarkus.io/blog/quarkus-2-10-0-final-released/


PUBLICApache Camel Quarkus

14

Demo Time!!!

https://bit.ly/supersonic-integration

Starting with Netty, which is a nice and lightweight abstraction on top of Java’s NIO.2 
APIs for non-blocking I/O operations.

Further improved by Eclipse Vert.x which gives us all of tools for a fully reactive Java 
application

Layer on Quarkus which presents a familiar and comfortable programming model 
based on JakartaEE Microprofile

And to go completely reactive it supports SmallRye Mutinty as a simplified experience 
for reactive streams.

All of this, and the underlying runtime is already providing support for the forthcoming 
Project Loom Virtual Threads.

This means that you are running on an extremely fast and efficient runtime today and 
ready to automatically take advantage of evolving features of the JVM tomorrow.



PUBLIC

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

15

And be sure to check out the other amazing Apache Camel content later this week!

Tuesday @ 12:10 CDT - Low-code Visual Integration Design with Camel Karavan

Wednesday @ 11:20 CDT - Saving Lives with Apache Camel K

Thank You


