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Who We Are? — Jordan West
○ SWE @ Netflix approx. 2 years
○ Cassandra committer
○ Been working with Cassandra for approx. 7 

years total. Databases 10+.
 

— Cheng Wang
○ SWE @ Netflix approx. 6 months
○ Been working with database engine for approx. 

6 years total
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Online Datastore 
Team @Netflix

- Provide high leverage datastores as a managed 
service at scale, to support all operational data needs 
spanning across Streaming, Studio and Gaming 
businesses for Netflix.
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Cassandra @ 
Netflix

— Over 22,000 Nodes
 

— 900+ Clusters

— 12+ PB of Data
  

— 12M+ req/s (approx. 60-40 read-write)

— Cassandra 3.0.x (for now)

— Moving towards 4.x targeting rollout 
2023
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Why Are 
Bad 
Partitions 
Bad? 
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Material Business 

Impact
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Types of 
Bad Partitions

— Total Size: Partitions in the GB+ size 
range
 

— Row Count: Smaller partitions with 
Million+ rows

— Tombstone Count: Partitions with 
Million+ tombstones
  

— SSTable Count: A partition spread across 
many sstables is more expensive to read
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What Makes Bad 
Partitions Bad

— CPU Usage
 

— Memory Usage
○ Buffer allocations
○ Object overhead
○ GC

— Reading More Files

— Compaction Impacts
  

— Cascading Read Latency
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How We 
Improve?

Identification Prevention

Blocking Mitigation
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Identification
Prevention

Blocking Mitigation

Identification
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Writing large partition cassrepair/repair_status 
abcassandra:23 (11584798 bytes to sstable NNN-Data.db)
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$ sstabledump me-1176537-big-Data.db -k josephl_test
[
  {
    "partition" : {
      "key" : [ "josephl_test" ],
      "position" : 0
    },
    "rows" : [
      {
        "type" : "row",
        "position" : 26,
        "clustering" : [ "0x68656c6c6f0a" ],
        "liveness_info" : { "tstamp" : "2021-10-23T00:17:11.252097Z" },
        "cells" : [
          { "name" : "value", "value" : "0xb068656c6c6f20776f726c64" },
          { "name" : "value_metadata", "value" : "0x" }
        ]
      }
    ]
  }
]

$ sstabledump …. | grep row | wc -l

$ nodetool getendpoints foo bar josephl_test

$ nodetool getsstables foo bar josephl_test

$ sstablemetadata foo bar ….
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nodetool
getsstables -l - Small extension to nodetool 

getsstables

- Only works for 
LeveledCompactionStrategy

- Helps identify how partitions are 
spread across sstables
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nodetool 
toppartitions 
-m MAX

- Extension to top partitions to find 
TopK in addition to counts

- Latency

- SSTables

- Rows

- Tombstones
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fix intermittent 
failure in top 
partitions

- CASSANDRA-17254

- Incorrect use of ByteBuffers led to 
intermittent formatting errors when 
outputting top partitions results

- Would often cause a delay in our ability 
to identify problematic partitions
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Live Demo
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$ nt toppartitions -m MAX -a TOMBSTONES marken_01 startedannotationoperationid 10000
TOMBSTONES Max Sampler:
  Top 10 partitions:

Partition       Max
STARTED      5911

$ cqlsh
[cqlsh 5.0.1 | Cassandra 3.0.26.1 | CQL spec 3.4.0 | Native protocol v3]
Use HELP for help.
cqlsh> ALTER TABLE marken_01.startedannotationoperationid WITH gc_grace_seconds=3600;

$ nt compact marken_01 startedannotationoperationid

$ nt toppartitions -m MAX -a TOMBSTONES marken_01 startedannotationoperationid 10000
TOMBSTONES Max Sampler:
  Top 10 partitions:

Partition       Max
STARTED      2970
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Blocking Prevention

Identification

Mitigationblocking
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Partition blocklist - Backport CASSANDRA-12106: 
add ability to blocklist / denylist a CQL 
partition so all requests are ignored

- Prevent reads, range reads and writes 
(configurable) to given partition keys

- Write to system table via client or JMX 
to add or remove denied partitions

- Provides a tool to operators to control 
undesirable application behavior



ApacheCon 2022

Mitigation Prevention

Identification

Blocking
Mitigation
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nodetool
force compact

$ nodetool 
forcecompact 
keyspace table 
list_of_partition_keys

- New tool developed internally - Cassandra 

- Previously, we reduced the gc_grace_seconds 
and ran on the nodetool compact
- Took hours even days to scan all the sstables 
- Ran at the risk of deleted(tomestone) data 

reappearing

- Force compact
- Only scans the sstables for the keys given
- Help to quickly mitigate the bad partitions and 

avoid scanning the whole table
- Ignore gc_grace_seconds: For keys where we 

know it is safe to remove tombstoned or TTL’d 
data

- Target for OSS 4.x



ApacheCon 2022

Live Demo



Thank You.

Jordan West (jwest@apache.org)
Cheng Wang (superwangcheng@gmail.com)


