
Improving Bad Partition Handling
In Apache Cassandra

Cheng Wang
Jordan West

ApacheCon 2022

Who We Are? — Jordan West
○ SWE @ Netflix approx. 2 years
○ Cassandra committer
○ Been working with Cassandra for approx. 7

years total. Databases 10+.

— Cheng Wang
○ SWE @ Netflix approx. 6 months
○ Been working with database engine for approx.

6 years total

ApacheCon 2022

Online Datastore
Team @Netflix

- Provide high leverage datastores as a managed
service at scale, to support all operational data needs
spanning across Streaming, Studio and Gaming
businesses for Netflix.

ApacheCon 2022

Cassandra @
Netflix

— Over 22,000 Nodes

— 900+ Clusters

— 12+ PB of Data

— 12M+ req/s (approx. 60-40 read-write)

— Cassandra 3.0.x (for now)

— Moving towards 4.x targeting rollout
2023

ApacheCon 2022

Why Are
Bad
Partitions
Bad?

NETFLIX
IMAGE

Bad Partitions Have
Material Business

Impact

NETFLIX
IMAGE

NETFLIX
IMAGE

NETFLIX
IMAGE

ApacheCon 2022

Types of
Bad Partitions

— Total Size: Partitions in the GB+ size
range

— Row Count: Smaller partitions with
Million+ rows

— Tombstone Count: Partitions with
Million+ tombstones

— SSTable Count: A partition spread across
many sstables is more expensive to read

ApacheCon 2022

What Makes Bad
Partitions Bad

— CPU Usage

— Memory Usage
○ Buffer allocations
○ Object overhead
○ GC

— Reading More Files

— Compaction Impacts

— Cascading Read Latency

ApacheCon 2022

How We
Improve?

Identification Prevention

Blocking Mitigation

ApacheCon 2022

Identification
Prevention

Blocking Mitigation

Identification

ApacheCon 2022

Writing large partition cassrepair/repair_status
abcassandra:23 (11584798 bytes to sstable NNN-Data.db)

NETFLIX
TEXT

$ sstabledump me-1176537-big-Data.db -k josephl_test
[
 {
 "partition" : {
 "key" : ["josephl_test"],
 "position" : 0
 },
 "rows" : [
 {
 "type" : "row",
 "position" : 26,
 "clustering" : ["0x68656c6c6f0a"],
 "liveness_info" : { "tstamp" : "2021-10-23T00:17:11.252097Z" },
 "cells" : [
 { "name" : "value", "value" : "0xb068656c6c6f20776f726c64" },
 { "name" : "value_metadata", "value" : "0x" }
]
 }
]
 }
]

$ sstabledump …. | grep row | wc -l

$ nodetool getendpoints foo bar josephl_test

$ nodetool getsstables foo bar josephl_test

$ sstablemetadata foo bar ….

ApacheCon 2022

nodetool
getsstables -l - Small extension to nodetool

getsstables

- Only works for
LeveledCompactionStrategy

- Helps identify how partitions are
spread across sstables

ApacheCon 2022

nodetool
toppartitions
-m MAX

- Extension to top partitions to find
TopK in addition to counts

- Latency

- SSTables

- Rows

- Tombstones

ApacheCon 2022

fix intermittent
failure in top
partitions

- CASSANDRA-17254

- Incorrect use of ByteBuffers led to
intermittent formatting errors when
outputting top partitions results

- Would often cause a delay in our ability
to identify problematic partitions

ApacheCon 2022

Live Demo

ApacheCon 2022

$ nt toppartitions -m MAX -a TOMBSTONES marken_01 startedannotationoperationid 10000
TOMBSTONES Max Sampler:
 Top 10 partitions:

Partition Max
STARTED 5911

$ cqlsh
[cqlsh 5.0.1 | Cassandra 3.0.26.1 | CQL spec 3.4.0 | Native protocol v3]
Use HELP for help.
cqlsh> ALTER TABLE marken_01.startedannotationoperationid WITH gc_grace_seconds=3600;

$ nt compact marken_01 startedannotationoperationid

$ nt toppartitions -m MAX -a TOMBSTONES marken_01 startedannotationoperationid 10000
TOMBSTONES Max Sampler:
 Top 10 partitions:

Partition Max
STARTED 2970

ApacheCon 2022

Blocking Prevention

Identification

Mitigationblocking

ApacheCon 2022

Partition blocklist - Backport CASSANDRA-12106:
add ability to blocklist / denylist a CQL
partition so all requests are ignored

- Prevent reads, range reads and writes
(configurable) to given partition keys

- Write to system table via client or JMX
to add or remove denied partitions

- Provides a tool to operators to control
undesirable application behavior

ApacheCon 2022

Mitigation Prevention

Identification

Blocking
Mitigation

ApacheCon 2022

nodetool
force compact

$ nodetool
forcecompact
keyspace table
list_of_partition_keys

- New tool developed internally - Cassandra

- Previously, we reduced the gc_grace_seconds
and ran on the nodetool compact
- Took hours even days to scan all the sstables
- Ran at the risk of deleted(tomestone) data

reappearing

- Force compact
- Only scans the sstables for the keys given
- Help to quickly mitigate the bad partitions and

avoid scanning the whole table
- Ignore gc_grace_seconds: For keys where we

know it is safe to remove tombstoned or TTL’d
data

- Target for OSS 4.x

ApacheCon 2022

Live Demo

Thank You.

Jordan West (jwest@apache.org)
Cheng Wang (superwangcheng@gmail.com)

