
Szehon Ho, October 4 2022

Apache Iceberg’s Best Secret
A Guide to Metadata Tables

Apache Iceberg Project
• Developed to address Hive shortcomings

• Apache Incubator 2018-2020

• 295 contributors from many companies

• Collaboration with Spark/Flink/Trino communities

• Wide adoption in 2022

What is Apache Iceberg?
In its own Words

What is Apache Iceberg?

• Hive: Directory contains all files in
tables and partitions

• Iceberg: Follow a tree of “Metadata
Files” that track data of Tables and
Partitions

“Table Format” = Layout of Files in Table

Metadata Files
Unlocking many new features: only some shown here

Category Hive Behavior Iceberg Metadata
Feature

Atomicity on

Object Store (S3)

Inconsistent Listing

Non-Atomic

Data File Listings in
metadata file

Time Travel/
Rollback Not supported Snapshot File

Isolation Level Need Explicit
Directory Lock

Snapshot Info on each
Data File,

Check only conflicts

Performance
(Predicate Pruning)

Partition (Directory)
level filter only

1. Partition stats at
multiple layers

2. Min/Max Column
Stats

“Open” Table Format

• Metadata Files are the basis for all of Iceberg’s advance feature-set

• Metadata Tables: Exposes all Metadata Files in user-friendly way

• Interface: Exposed as SQL as system tables

• Performance: Queries are much faster than data queries

• Full Transparency: Users/Systems can easily self-explore Metadata Tables to know how the
system works, and how to improve it

• Most tough problems can be debugged (at least partially) by Iceberg metadata tables

• Decide how to optimize the table pre-emptively

• Build monitoring, auditing, data quality checks beyond Iceberg

My First Metadata Table
Partitions Table

Partition table = “db.table.partitions”

Metadata Tables
The Full List

• history

• metadata_logs

• snapshots

• manifests

• all_manifests

• entries

• all_entries

•files

•data_files

•delete_files

•all_files

•all_data_files

•all_delete_files

Partitions is just an aggregate view of files table
Iceberg Metadata Tables:

Hierarchical Structure

• Catalog (atomic pointer to Root
Metadata)

• Metadata File (Root Metadata)

• Snapshot Files (Manifest List)

• Manifest Files

• Data Files

Metadata Files Review

Metadata Tables
Mapping to Metadata Files

Metadata Table Queries About

metadata_logs Last Metadata File Metadata File

snapshots Last Metadata File Snaphot Files

(Manifest Lists)

manifests Snapshot Files

(Manifest Lists) Manifests

Files/Entries (see next
slide) Manifests Data Files

SHOW TBLPROPERTIES

• Each Metadata Table has information about all or a
subset of one layer of “Metadata File”

• Table for a Metadata File doesn’t read that layer
metadata file, rather from the layer above it

Files/Entries Tables
Various Views of “Data Files” for User Convenience

• Partitions table is just an aggregate view of Files table

• Files/Entries: Equivalent. Manifest File Entry = metadata about a data file

• Files = “Files” part of Manifest Entry, only physical attributes of a file

• Entries = Complete row, including snapshot information of the file

• All_ tables: All_Manifests, All_Files, All_Entries

• all_x = All Metadata Files of X Layer

• x = Metadata Files of X layer that are pointed to by current snapshot

• Data/Delete: Data_Files, Delete_Files

• Delete Files a V2 concept for Merge-on-Read

• “Files” table selects both types of files

FAQ: Partition Information

• How many files per partition?

• Total size of each partition?

• Last update time per partition?

SELECT partition,

sum(file_size_in_bytes) AS partition_size,

FROM db.table.files

GROUP BY partition

SELECT

e.data_file.partition,

MAX(s.committed_at) AS last_modified_time

FROM db.table.snapshots s

JOIN db.table.entries e

WHERE s.snapshot_id = e.snapshot_id

GROUP_BY by e.data_file.partition

SELECT partition, file_count

FROM db.table.partitions

partition file_count
{"date":"2022-1
0-04","hour":5} 5

partition partition_size
{"date":"2022-1
0-04","hour":5} 937

partition last_modified_time

{“date":"2022
-10-04",

"hour":5}

2022-09-07
01:30:52.371

Closer Look at Snapshots

• Snapshot points to a list of files belonging to table at point in time

• Snapshot is also an operation on files (adding, removing)

• Entries table tracks which snapshot operated on the file

• entries.snapshot_id

• entries.status : 0=EXISTING, aka rewrite, 1= ADDED, 2 =DELETED

Two Meanings vis-a-vis Files

FAQ: Snapshot Questions
• What files are added by snapshot 8339536322928208593?

• What files are referenced by snapshot 8339536322928208593?

• Use time-travel (SQL Syntax)

SELECT data_file.file_path

FROM db.table.entries

WHERE snapshot_id=8339536322928208593

AND status=1;

SELECT file_path

FROM db.table.files

VERSION AS OF 8339536322928208593;

FAQs: How to Keep Iceberg Maintained

• Expire Snapshots (Cleanup)

• RewriteManifests (Metadata Files Optimization)

• RewriteFiles (Data Files Optimization)

FAQ: Disk Usage and Expire Snapshots
• User Question: I am hitting HDFS quotas. I ran compact files/deleted partitions, why do I still see quota limit?

• Answer: Expire snapshots

• Metadata Tables:

• all_manifests, all_files will show you everything reachable even from previous snapshots

• manifests, files will show everything reachable from current snapshot

• Useful Queries for Dashboards:

select sum(file_size_in_bytes) from db.table.all_files; // all reachable data files size

select sum(length) from db.table.all_manifests; //all reachable manifest files size

select sum(file_size_in_bytes) from db.table.files; // current snapshot files size

select sum(length) from db.table.manifests; // current snapshot manifest files size

FAQ: Disk Usage

Committed_at snapshot_id Summary

2022-08-24 14:01:43.191 4077543616265127980

{“added-data-files":"1",

“added-files-size":"904",

“added-records":"1",

“changed-partition-count":"1",

"spark.app.id":"local-1661374186213",

“total-data-files":"23",

“total-delete-files":"0",

“total-equality-deletes":"0",

“total-files-size":"20792",

“total-position-deletes":"0",

"total-records":"23"}

Snapshots Table Alternative
SELECT committed_at, snapshot_id, summary FROM db.table.snapshots;

http://spark.app.id

FAQ: When to Optimize Metadata
• Improve query planning time, metadata table query time, by reducing overhead of reading metadata-files

// Which manifests?

SELECT path,

added_data_files_count +
existing_data_files_count +
deleted_data_files_count as files

FROM db.table.manifests;

path files

s3://my_bucket/db/table/… 2

s3://my_bucket/db/table/… 4

// How many manifests?

SELECT count(*)

FROM db.table.manifests;

count(1)

200

// Are manifests sorted?

SELECT path, partition_summaries

FROM db.table.manifests;

path partition_summaries

s3://my_bucket/db/table/…
{“lower_bound”:”2022-10-04”,

"upper_bound":"2022-10-04"}

s3://my_bucket/db/table/
s3://my_bucket/db/table/
s3://my_bucket/db/table/

FAQ: When to Optimize Data
• Improve query time by minimizing file-read overhead

• Sort to improve selectivity of files, and compression ratio of files

// Are data files sorted?

// Note: Column coming soon

SELECT file_path,
readable_metrics.emp.upper_bound,

readable_metrics.emp.lower_bound,

FROM db.table.files;

file_path col.lower_bound col.upper_bound
s3://my_bucket/db/

table/… Abigail Adams Mike Monroe

s3://my_bucket/db/
table/… Nancy Nomura Zachary Zunich

// Too many small data files?

SELECT partition, count(*) as file_count,

sum(file_size_in_bytes)/count(*) as avg_size,

FROM db.table.files

GROUP BY partition

partition file_count avg_size
{"date":"2022-10-04

","hour":5} 100 5120000

s3://my_bucket/db/table/
s3://my_bucket/db/table/

Beyond Iceberg
• Measuring a system data completeness and latency is typically hard, but becomes do-able in Iceberg

• Incoming Dataset from Flink:

• (data string, event_time timestamp) partitioned by hour (event_time)

// Data Latency with custom UDF for calcuating time difference.

// Will be easier with readable_metrics column

SELECT max(diff(entries.data_file.lower_bounds[1], hour(snapshots.committed_at)) AS max_latency

FROM db.table.entries JOIN db.table.snapshots

ON entries.snapshot_id = snapshots.snapshot_id

GROUP BY entries.data_file.partition;

// Data Completeness

SELECT record_count AS received, partition

FROM db.table.partitions;

Use Case: Ingest Monitoring

Beyond Iceberg
Use Case: Data Quality Alerts

• Iceberg keeps interesting metrics per data file of every column:

• column_sizes

• value_counts

• null_values

• nan_values

• lower_bounds

• upper_bounds

• Can create alerts for partitions with nan_values
Select partition, (sum(to_int(files.nan_values[0])) AS nan_values

FROM db.table.files

GROUP BY files.partition

Future
Stay Tuned for Puffin Files

• Puffin Files introduced into Iceberg spec

• https://github.com/apache/iceberg/blob/master/format/puffin-spec.md

• For (TBD)

• Bloom Filters

• Datasketches

• Apply to data file or set of data files (TBD)

• Can be used for data quality percentiles

https://github.com/apache/iceberg/blob/master/format/puffin-spec.md

Questions?
Thank you for attending!

