
Jim Hughes and Austin Heyne

Apache Kafka and GeoMesa
Understanding and Streaming Geospatial Vector Data

Who we are:
Jim Hughes

● Software Engineer at Confluent
● GeoMesa committer
● SFCurve project lead
● JTS committer
● Contributor to GeoTools and GeoServer

Austin Heyne

● Software Engineer at GA-CCRi
● GeoMesa Lackey
● GeoSpatial Data Management SaaS Lead

Streaming Analytics in Kafka
Streaming Data

Understanding Data through Types

Asking Questions About Data

Producing Derivative Data

Using this scheme to
understand and process
GeoSpatial data.

Streaming

Interpreting

Processing

Knowledge

Streaming Analytics in Kafka

Using this scheme to
understand and process

GeoSpatial data.

Extracting Knowledge from Processing

Using Types to Process Data

Interpreting Data with Types

Streaming Data

subscribe(), poll(), send(),
flush(), beginTransaction(), …

KStream, KTable, filter(), map(),
flatMap(), join(), aggregate(),
transform(), …

CREATE STREAM, CREATE TABLE,
SELECT, JOIN, GROUP BY, SUM, …

KSQL UDFs

5

Streaming Data in Kafka

Apache Kafka Overview Speedrun

● Event streaming platform:
○ Publish (write)
○ Subscribe (read)
○ Store
○ Process

● Events are posted to Topics
● Topics are composed of

partitions
● Consumers read partitions
● Consumers can work in groups
● Brokers serve topics to

consumers

Interpreting Data in Kafka
Schemas are APIs

Schemas are about how teams work together

Booking
service

{user_id: 53, timestamp: 1497842472}

create table (
use_id number,
timestamp number)

Attribution
service

new Date(timestamp)

Booking
DB

Stream
processing

Schemas are about how teams work together

Booking
service

{user_id: 53, timestamp: “June 28, 2017 4:00pm”}

Attribution
service

Booking
DB

Stream
processing

Schemas are about how teams work together

Booking
service

{user_id: 53, timestamp: “June 28, 2017 4:00pm”}

Attribution
service

Booking
DB

Stream
processing

create table (
use_id number,
timestamp number)

new Date(timestamp)

Software
Engineering

 Teams
 &

 Culture

Teams
&

Culture

Data
&

Metadata

It isn’t just about the services

Schema are APIs

● They require specifications
● We need to make changes to them
● We need to detect breaking changes
● Versioning
● Tools

What do schema registries do?

1. Store schemas – put/get

2. Link one or more schema to each event

3. Java client that fetches and caches schemas

4. Enforcement of compatibility rules

5. Graphical browser

● Distributed REST interface
for serving schemas

○ Provides schema
versioning and evolution

○ Supports Avro, Protobuf,
and JSON

● Provides more compaction than
plain Avro

○ Schema ID is sent with
each message

Confluent Schema Registry

Processing Data with Kafka Streams

Kafka Streams Overview

• Java library for processing and analyzing data in Kafka

• Distinguishes between event time and processing time

• Windowing Support

• Real-time querying of application state

• Low barrier to entry

• Easily scalable

• Fault tolerant local state

• Exactly-once processing

• One-record-at-a-time processing

• Event time windowing (with out-of-order arrival!)

• Multiple levels of API/DSL

Kafka Streams Highlights

• A server side modification or standalone application
• Client side library
• Provides abstractions over base Kafka library and features

• A resource manager
• Parallelism is achieved through normal Kafka features

Kafka Streams is Not:

• Stream
• Sequence of Immutable records
• Unbounded
• Continuous
• Ordered (time)
• Replayable
• Fault tolerant

• Record
• Key-value pair of byte arrays

• Event == Data Record

Kafka Streams Topology

State Stores maintain state for a specific processor locally
• KeyValueStore
• WindowStore
• SessionStore
• …

Changelogs are partitioned
• Local store only has own partitions
• # changelog partitions == # input topic partitions

State Stores

KTable

Store Kafka Topic
(Stream)

Stream as Table
● Changelog of table
● Changelog replayed

to construct
● Aggregations produce

tables
○ Pageviews by user

Table as Stream
• Table is a snapshot
• Latest value for each

key

Stream-Table Duality

Kafka Streams Architecture

Kafka
● partitions for storage and

transport parallelism
Kafka Streams
● partitions for compute and

processing parallelism

Maximum parallelism == # partitions

Keys determine partition and thus
processing order

Parallelism

What is GeoMesa?

What is GeoMesa?

A suite of tools for streaming, persisting, managing, and analyzing spatio-temporal data at scale

What is GeoMesa?

A suite of tools for streaming, persisting, managing, and analyzing spatio-temporal data at scale

What is GeoMesa?

A suite of tools for streaming, persisting, managing, and analyzing spatio-temporal data at scale

What is GeoMesa?

A suite of tools for streaming, persisting, managing, and analyzing spatio-temporal data at scale

What is GeoMesa?

A suite of tools for streaming, persisting, managing, and analyzing spatio-temporal data at scale

Proposed Reference Architecture

Streaming GeoSpatial Data

GeoMesa KDS clients (like GeoServer)

1. Listen for updates from Kafka
2. Receive and answer spatial queries

These clients need an in-memory database
structure that can be updated quickly as new
updates come in.

GeoMesa Kafka DataStore - In-Memory Database

GeoMesa KDS clients (like GeoServer)

1. Listen for updates from Kafka
2. Receive and answer spatial queries

These clients need an in-memory database
structure that can be updated quickly as new
updates come in.

GeoMesa Kafka DataStore - In-Memory Database

Effectively, the GeoMesa KDS is a
“spatially-enabled” KTable.

GeoMesa Kafka Confluent
Schema Registry Integration

● Extension of GeoMesa Kafka Data Store
● Convert Schema Registry Avro to SimpleFeatures

○ Converts a schema into a SimpleFeatureType
○ Without a converter

● Uses schema metadata to interpret fields that are not
standard Avro

○ Geometry, Date, security, etc.

● Working on support for converting SimpleFeatures to Avro

GeoMesa Confluent Kafka Data Store

Stream Processing
GeoSpatial Data

GeoMesa Kafka Streams Integration

User
● Connection Parameters
● Type Name
● Schema Registry

Streams

GeoMesa Kafka Streams Integration

GeoMesaStreamsBuilder

StreamsBuilder

Consumed

Produced

Typename (SFT)

(Optional) ResetPolicy

GeoMesaSerde

TimestampExtractor

GeoMesa Kafka Topic
GeoMessage

● SimpleFeatures
○ Upsert / Change

● Control messages
○ Clear
○ Delete

GeoMesaMessage

● SimpleFeatures
○ Data provided in String

array

● Kafka Streams Serdes

Streaming Proximity Example
or close enough

Processing Architecture

Input GeoPartition

OutputCompute
Proximity

GeoMesa Kafka Streams Integration

builder = GeoMesaStreamsBuilder.create(params,
Topology.AutoOffsetReset.LATEST);

sft = DataStoreFinder.getDataStore(params).getSchema(typeName);

Serde<GeoMesaMessage> serde = builder.serde(typeName);

KStream<String, GeoMesaMessage> input = builder.stream(typeName);

‘mydataname’

Kafka Address
Consumer Count
etc

Processing Architecture

Input GeoPartition

OutputCompute
Proximity

GeoMesa Kafka Streams Integration

Integer defaultGeomIndex = sft.indexOf(sft.getGeometryDescriptor()
 .getLocalName());

KStream<String, GeoMesaMessage> geoPartioned = input
 .selectKey(new GeoPartitioner(numbits, defaultGeomIndex));

GeoHash

GeoHash

GeoHash

GeoHash

class GeoPartitioner implements KeyValueMapper<String, GeoMesaMessage,
 String> {
 …

}

GeoPartioner

class GeoPartitioner implements KeyValueMapper<String, GeoMesaMessage,
 String> {
 …

 @Override
 public String apply(String key, GeoMesaMessage value) {
 Geometry geom = (Geometry) value.attributes().apply(defaultGeomIndex);
 return getZBin(geom);
 }

}

GeoPartioner

class GeoPartitioner implements KeyValueMapper<String, GeoMesaMessage,
 String> {
 …

 @Override
 public String apply(String key, GeoMesaMessage value) {
 Geometry geom = (Geometry) value.attributes().apply(defaultGeomIndex);
 return getZBin(geom);
 }

 private String getZBin(Geometry geom) {
 Point safeGeom =
GeohashUtils.getInternationalDateLineSafeGeometry(geom).get().getCentroid();
 Long index = z2.index(safeGeom.getX(), safeGeom.getY(), false);
 return String.format("%0" + partitionNumBits + "d", index);
 }
}

GeoPartioner

GeoMesa Kafka Streams Integration

Integer defaultGeomIndex = sft.indexOf(sft.getGeometryDescriptor()
 .getLocalName());

KStream<String, GeoMesaMessage> geoPartioned = input
 .selectKey(new GeoPartitioner(numbits, defaultGeomIndex));

Processing Architecture

Input GeoPartition

OutputCompute
Proximity

GeoSpatial Self Join

KStream<String, GeoMesaMessage> proximities = geoPartioned
 .join(geoPartioned,
 (left, right) -> new Proximity(left, right, defaultGeomIndex),
 JoinWindows.of(Duration.ofMinutes(2)),
 Joined.with(Serdes.String(), serde, serde))

Self Join Optimizations

KIP-862: Self-join optimization for stream-stream joins

Self Join Optimizations

https://cwiki.apache.org/confluence/display/KAFKA/KIP-862%3A+Self-join+optimization+for+stream-stream+joins

GeoSpatial Self Join

KStream<String, GeoMesaMessage> proximities = geoPartioned
 .join(geoPartioned,
 (left, right) -> new Proximity(left, right, defaultGeomIndex),
 JoinWindows.of(Duration.ofMinutes(2)),
 Joined.with(Serdes.String(), serde, serde))
 .filter((k, v) -> v.areDifferent() && v.areNotProximities() &&
 v.getDistance() < proximityDistanceMeters)

GeoSpatial Self Join

KStream<String, GeoMesaMessage> proximities = geoPartioned
 .join(geoPartioned,
 (left, right) -> new Proximity(left, right, defaultGeomIndex),
 JoinWindows.of(Duration.ofMinutes(2)),
 Joined.with(Serdes.String(), serde, serde))
 .filter((k, v) -> v.areDifferent() && v.areNotProximities() &&
 v.getDistance() < proximityDistanceMeters)
 .mapValues(Proximity::toGeoMesaMessage)

GeoSpatial Self Join

KStream<String, GeoMesaMessage> proximities = geoPartioned
 .join(geoPartioned,
 (left, right) -> new Proximity(left, right, defaultGeomIndex),
 JoinWindows.of(Duration.ofMinutes(2)),
 Joined.with(Serdes.String(), serde, serde))
 .filter((k, v) -> v.areDifferent() && v.areNotProximities() &&
 v.getDistance() < proximityDistanceMeters)
 .mapValues(Proximity::toGeoMesaMessage)
 .selectKey((k, v) -> proximityId + UUID.randomUUID());

Processing Architecture

Input GeoPartition

OutputCompute
Proximity

builder.to(typeName, proximities);

Output

NB: Kafka Streams uses stream.to(‘topic’)

● GeoPartioning Boundary Problem

● Z2 aware ConsumerPartitionAssignor

Future Optimizations

GeoMesa: https://www.geomesa.org

GeoMesa Tutorials and Quickstarts: https://github.com/geomesa/geomesa-tutorials

GeoMesa Kafka Streams Quickstart: https://github.com/geomesa/geomesa-tutorials/pull/88

Gitter: https://gitter.im/locationtech/geomesa

Resources, Questions and Eye Candy

https://www.geomesa.org
https://github.com/geomesa/geomesa-tutorials
https://github.com/geomesa/geomesa-tutorials/pull/88
https://gitter.im/locationtech/geomesa

Backup Slides

Kafka
DataStore

For most use cases, GeoMesa uses a class which maintains two things:

1. A HashMap of Feature IDs to records
2. A bucket index of spatial grid cells containing records

Updates:

● Find the old record in the HashMap
● Remove it from the bucket index
● Add the new element

GeoMesa Kafka DataStore In-Memory Database

For situations when queries on attribute columns may be important, GeoMesa
can be configured to use CQEngine!

For GeoServer use cases, it is faster than the standard KDS and H2.
● Hughes, Zimmerman, Eichelberger, and Fox. "A survey of techniques and open-source tools for processing streams

of spatio-temporal events". Conference: the 7th ACM SIGSPATIAL International Workshop on GeoStreaming.
October 2016. DOI: 10.1145/3003421.3003432

GeoMesa Kafka DataStore In-Memory Database

https://dl.acm.org/citation.cfm?id=3003421

GeoMesa Kafka DataStore In-Memory Database

What tools are there?

Kafka has command line tools

● Manage topics
● Send messages
● Listen to topics

GeoMesa Kafka has command line tools

● Manage SimpleFeatureTypes
● Send SimpleFeatures as messages
● Listen to topics

GeoMesa KDS clients (like GeoServer)

1. Listen for updates from Kafka
2. Receive and answer spatial queries

These clients need an in-memory database
structure that can be updated quickly as new
updates come in.

GeoMesa Kafka DataStore In-Memory Database
R-Trees and Quad-trees are
slow to update with scale.

Other possibilities include trying H2’s spatial
support. Indexing in H2 was slow when we tried
it. (Admittedly, back in 2016.)

To address this, GeoMesa has rolled
its own lightweight, in-memory

database.

Kafka Streams

• Processing Time
• now() when data is being processed

• Event Time
• Point in time when event or data occurred

• Ingestion Time
• Time when event is stored in a topic partition

Time in Kafka Streams

Assigned to every Event

Defaults to Ingestion Time

TimestampExtractor
• Used to pull event time out of record

Stream Time
• Data driven time of stream
• Only progressed when data timestamps do

Timestamp

Kafka
● partitions for storage and transport

parallelism
Kafka Streams
● partitions for compute and

processing parallelism

Maximum parallelism == # partitions
Keys determine partition and thus
processing order

Parallelism

Parallelism

One Streams App can run
multiple topology threads
● Are all independent and do

not share resources
● No inter-thread coordination

needed

Parallelism

==

Each Instance keeps copy of its
state store partitions

State Stores

State
● Uses Kafka topics

○ Has Producer/Consumer tolerance capabilities
● Event processing transactions include State commits
● Can be restored from changelog topics

○ Log compaction reduces overhead

Failures
● Partitions are re-distributed to consumer group members
● Standby replicas will keep all state store partitions warm

Fault Tolerance

Summary of Kafka Streams operations

82

● Original use case was to remove GeoMesa from some analytics
○ Analytics can output Avro with the Schema Registry
○ While minimizing additional processing to get features in GeoServer

■ Avoids the standard solution of using NiFi with a converter
■ Less processing overhead, less development

● Encourages more third-party integration with GeoMesa
○ Avro is a common data format

■ Fewer barriers to entry for new GeoMesa users

○ Opens up the door for other Kafka stream processing tools
■ KStreams, ksqlDB

Motivation / Use Case

