
From Column-Level to Cell-Level: Towards 
Finer-grained Encryption in Apache Parquet

Xinli Shang, Mohammad Islam 



Speaker Intro
● Xinli Shang

○ Apache Parquet PMC Chair 
○ Manager at Uber Data 

● Mahammad Islam 
○ Distinguished Engineer at Uber
○ PMC of Apache Oozie and Tez 



Agenda
● Apache Parquet introduction

● Modular/column-level encryption 

● Cell-level encryption
○ Use cases

○ Challenges

○ Solutions

○ Benchmarking 

 



Big Data Storage File Format 
● Columnar storage file format

○ Apache Parquet

■ Widely used Big Data File Format
■ Designed for efficiency, security & interoperability

○ Apache ORC 

● Row storage file format
○ Apache Avro, JSON, CSV



Row-oriented v.s. column-oriented storage 

https://blog.twitter.com/engineering/en_us/a/2013/dremel-made-simple-with-parquet

In row-oriented storage, data is one row at a time

In column-oriented storage, data is one column at a time



Apache Parquet structure in a high level  
● Each file has a foote - metadata & schema of 

the file 

● Data is divided into ‘row group’

● Each ‘row group’ has all column data called 
‘column chunk’

● Each ‘column chunk’ is further divided into 
‘page’

● Page is the unit for encoding, compression 
and encryption



Column(modular) encryption in Apache Parquet
 ● Released in parquet-mr 1.12.0

● Column (also called module) is encrypted independently with it’s own key
● Already adopted by the industry

○ e.g. data retention, encryption-on-write-then-delete after x days
○ One Stone, Three Birds: EngBlog  

https://www.uber.com/blog/one-stone-three-birds-finer-grained-encryption-apache-parquet/


Finer grain encryption than column level is needed 
● A table have mixed data from different country and pii/non-pii 

● Different country has different requirements for access and data retention

■ Encrypt data firstly then delete the encryption key after m days

● Different PII data has different sensitivity and requires different protection



Technical challenges  
● Parquet is columnar storage

○ Field/record level encryption go against the design 

○ Key metadata, algorithm info need to pass to be stored in place 

● Encryption is generally a block operation 
○ Doesn’t apply to some data types like integer, float, boolean …



Technical approaches  
● FPE(Format Preserving Encryption) in-place encryption 

● Column-splitting then column encryption 

● Adding string column then record level encryption  



Solution 1: FPE in-place encryption 
● FPE is used to encrypt cell data while preserving the original data type. 

○ double->double
○ string->string
○ …

● The encryption can be done in-place
○ Plaintext cell data is encrypted in existing cell



Pros & cons of FPE solution 
● Pros

○ In-place encryption, no need extra place to hold encrypted data

● Cons
○ Need to record which cell is encrypted and store it somewhere

■ Specification change could impact multiple version of Parquet implementation  

○ There are ongoing concerns about FPE
■ FF2 & FF3 are not considered to be cryptographically secure 



Solution 2: Column-splitting then column encryption 
● Clone columns with the same data type as the original column

○ Adding, write-splitting, read-merging are done inside Parquet 

● Apply modular(column) encryption to hidden columns 



Pros & cons of column splitting & then module encryption

● Pros
○ AES is more secure and mature than FPE

○ Column encryption is already adopted in industry, stable and mature now 

○ No need specification change of Parquet

● Cons
○ Add overhead for splitting columns and merging 

○ Synchronization is needed cross columns when applying filter  



Solution 3: Add string column & record encryption  
● Similar as column-splitting, but only add one single column

● Cell data is encrypted individually and is stored in the string column

○ The encrypted string contains key metadata, algorithm info…

○ Merge the two columns when reading 



Pros & cons of adding string column & record encryption 
● Pros

○ Add less columns than approach #2

● Cons
○ String column has more overhead 

○ Each record need to carry the key metadata, encr algorithm. Add more space overhead



Current status 
● Approach #2 (column-splitting) is recommended in community 

● Requesting for more comments (parquet-2116, design doc)

● Internal implementation is rolled out to production. Will open PR shortly. 

 

https://issues.apache.org/jira/browse/PARQUET-2116
https://docs.google.com/document/d/1Q-d98Os_aJahUynznPrWvXwWQeN0aFDRhZj3hXt_JOM/edit#


Overhead benchmark of approach #2
● Space overhead 

○ Hidden columns add more size

○ Change of data order in original column can result in size increase 

● Time overhead
○ More time needed for splitting in write and merging in read

○ Need to deal with more data as discussed in space overhead



Space overhead
● 3.1 GHz Quad-Core Intel Core i7, 
● 16G 2133 MHz Memory 
● macOS Monterey Version 12.2.1(21D62)

● 5 columns: 1 long and 4 string
● Uncompressed file size is 152MB



Time overhead
● 3.1 GHz Quad-Core Intel Core i7, 
● 16G 2133 MHz Memory 
● macOS Monterey Version 12.2.1(21D62)

● 5 columns: 1 long and 4 string
● Uncompressed file size is 152MB



 Compatibility of Approach #2
● Backward compatibility

○ Parquet with this feature read data written by older version Parquet 
○ No changed behavior is expected

● Forward compatibility
○ Older version Parquet read cell-level encrypted data
○ No specification change but it adds hidden column 
○ Next slide → 



 Forward compatibility of Approach #2

Requested Schema  Behavior 

No cell-encrypted data is requested No change 

Request original column but no hidden column return data with null or masked 
value  

Request original column with hidden column 
like ‘select *...’

Ether throw exception or user see 
extra columns



Summary 
● Introduce cell-level encryption 

● Several approaches available
○ FPE & in-place

○ Column-splitting then modular encryption (recommended) 

○ Adding string column then record encryption 

● Benchmarking, compatibility, current status 



Q & A

We are hiring!

email: shangxinli@apache.org

mailto:shangxinli@apache.org

