
Toward a Modular Cassandra

Derek Chen-Becker

ApacheCon North America, 2022



About Me

� Senior Engineer at AWS

� Lead Maintainer, SigV4 Auth Plugin

� Advocate and enthusiast
� Involved in OSS 15 years

� Working with Cassandra 7+ years

� Involved more in the last 3



Agenda

� Why Modularity?

� Existing Work

� Storage API Proposal

� More Modularity

� Call to Action



Modularity



Why Modularity?

� Give end users flexibility and choice
� Tune to workload

� Additional features

� Experimentation and improvement
� Ideas don’t have to be holistic

� Easier to focus on a specific area



Reduce Complexity

� Make it easier for devs to understand the system

� Make it easier to audit

� Lower the threshold for meaningful contributions

� Currently difficult (for me) to figure out boundaries



Trends In Modularization



CASSANDRA-13475

� 5+ years old, not much progress lately

� Pluggable Storage Engine API

� RocksDB Implementation

https://issues.apache.org/jira/browse/CASSANDRA-13475


CEP-11 : Pluggable Memtable

� Alternate off-heap memtable to reduce GC impact

� Includes both a new interface for Memtables, as well as a new implementation

� Indirectly impacts commit log and durable store

https://cwiki.apache.org/confluence/display/CASSANDRA/CEP-11%3A+Pluggable+memtable+implementations


CEP-11 : Pluggable Memtable

MemtableMemtable

https://cwiki.apache.org/confluence/display/CASSANDRA/CEP-11%3A+Pluggable+memtable+implementations


CEP-18 : Modularization

� Targets 4 areas: Schema, Topology, Compaction, and Failure Detection

� Withdrawn in favor of per-functionality tickets

� Schema pluggability and failure detection merged

https://cwiki.apache.org/confluence/display/CASSANDRA/CEP-18%3A+Improving+Modularity


CEP-21 : Cluster Metadata Service

� Main motivation is to address existing failure modes

� Proposes linearization of cluster metadata (schema, topology, etc)

� Does not propose externalizing metadata, but also does not preclude

https://cwiki.apache.org/confluence/display/CASSANDRA/CEP-21%3A+Transactional+Cluster+Metadata


Codebase Challenges



It’s Not You, It’s Me

� Challenges specific to modularization

� Partly, coming up to speed on a mature codebase

� Potentially an issue for other new contributors



"Statics all the way down…"



Not just Schema

~/c/cassandra ❯❯❯ rg –Uc 'static.*\sinstance\s+=' | wc -l

156

� DatabaseDescriptor is essentially one giant global variable

� Good news
� Only a small number are related to pluggable behavior

� Gradual change is OK



Diffusion of Responsibility

� Different aspects of processing queries are 
commingled

� Figuring out what a given method/class does can be 
complicated

� Impedes testing and reasoning about changes

Image from https://commons.wikimedia.org/wiki/File:Diffusion_microscopic_picture.gif, Jacopo Bertolotti

https://commons.wikimedia.org/wiki/File:Diffusion_microscopic_picture.gif


Interfaces, kind of

� SchemaProvider has 9 methods

� Schema has 40 public methods, and only implements SchemaProvider



Why does this matter?

� Lack of clear separation of concerns reduces comprehensibility

� There are definitely valid reasons for statics

� Not uncommon in long-lived projects as they evolve

� Difficult to experiment
� CEP-18 Schema: 3,164 additions and 1,913 deletions

� CASSANDRA-13475 (pluggable storage API): open since 2017



Modularizing Storage



Why?

� Better match user requirements

� Allows for easier experimentation

� Precedence in other DBs
� MySQL

� PostgreSQL

� MongoDB



Step 1: Questioning Identity

� Fundamental
� CQL/Schema

� Transactions

� Important, but tradeable
� User-selectable consistency level

� CDC

� Important, but 
� Performance characteristics



Step 2: Draw a Line

� How much do we want behind the abstraction?

� Do we want a single API, or can we compose things?

� Can we have multiple layers of modularity?



Read Path Overview

� Parse and validate query

� Transform restrictions and key bounds
� Dispatch to StorageProxy to get PartitionIterator

� Translate PartitionIterator into ResultSet



Write Path Overview

� Parse and validate query

� Transform conditions

� Check disk space (!)

� Dispatch to StorageProxy



StorageProxy

� It's in the name…

� Much larger than the interface suggests

� Abstracts a lot of functionality
� Commit log

� Replication

� Hinting



Challenges

� Need to get agreement on essential/pluggable aspects

� Breaking work down into incremental phases

� Figure out how to involve new API



What About CDC?

� Current implementation is minimal functionality
� Hard link commit logs

� Build index for commit logs

� To the consumer: caveat emptor!

� Can we design an interface?

� Should this be tied to the storage engine?



Authentication and Authorization

� AuthN and AuthZ already pluggable (plaintext, Kerberos, LDAP, SigV4)

� Room for improvement in terms of granularity and model: consider a change from listing 
permissions to authorizing per call

� Pluggable AuthN for inter-node?



What Next?



Call to Action

� Audit existing interactions (in progress) with storage

� Before reaching CEP, need lots of discussion

� Reach out if interested!

� apache@chen-becker.org

mailto:apache@chen-becker.org


Questions?


