
Performance tuning for
Apache Pulsar
Kubernetes deployments
in the cloud
Lari Hotari

October 5, 2022

Lari Hotari is an Apache Pulsar
committer and PMC member. He has
worked on the Java platform since 1997
and has contributed to open source for
over 20 years.

Lari Hotari

Engineering Coach, Streaming
Customer Reliability Engineering

DataStax

Lari.Hotari@datastax.com

@lhotari

2

3

Agenda

● Performance Tuning
● Apache Pulsar

Kubernetes deployments
● Scaling out and

scaling up
● Overview of tunable

configuration

4

5
Going fast?

6
Short time-to-recover?

7
Efficiency?

The goal of performance tuning?

● Fulfilling the quality requirements and constraints of your
system.

● Improving price/performance to reduce cost

8

Performance aspects

9

● Latency of operations

● Throughput of operations

● Quality of operations
● efficiency, usability, responsiveness, correctness, consistency, integrity,

reliability, availability, resilience, robustness, recoverability, security, safety,

maintainability

● Impacts value and cost

Performance tuning

10

USE method for analyzing system performance

● “For every resource, check

Utilization, Saturation, and

Errors.”

● It's intended to be used early

in a performance

investigation, to identify

systemic bottlenecks.

11

https://www.brendangregg.com/usemethod.html

https://www.brendangregg.com/usemethod.html

The Four Golden Signals for monitoring in SRE

● Latency

● Traffic

● Errors

● Saturation

12

https://sre.google/sre-book/monitoring-distributed-systems/

https://sre.google/sre-book/monitoring-distributed-systems/

Apache Pulsar Kubernetes deployment options

● Apache Pulsar Helm chart

● https://github.com/apache/pulsar-helm-chart

● DataStax Apache Pulsar Helm chart

● https://github.com/datastax/pulsar-helm-chart

● StreamNative Apache Pulsar Helm chart

● https://github.com/streamnative/charts/tree/master/charts/pulsar

13

https://github.com/apache/pulsar-helm-chart
https://github.com/datastax/pulsar-helm-chart
https://github.com/streamnative/charts/tree/master/charts/pulsar

Observability in Pulsar Kubernetes deployments

● Prometheus

● Grafana

● Grafana Dashboards

● Pulsar Broker

● Bookkeeper

● Zookeeper

14

15

16

17

Pulsar Architecture for Kubernetes deployments

18

19
https://www.encyclopedia.com/computing/dictionaries-thesauruses-pictures-and-press-releases/performance-model

https://www.encyclopedia.com/computing/dictionaries-thesauruses-pictures-and-press-releases/performance-model

20

“The Importance of Mental
Models for Incident
Response” by Jack
Vanlightly

”It starts with your mental model
of the system, the more complete
and more accurate the model the
faster you are likely to be able to
diagnose and remediate the issue.
It’s both a map but also an
understanding of how components
interact that allows you to infer
how signals in one part of the
system can explain behaviour seen
in another.”

https://medium.com/splunk-maas
/the-importance-of-mental-models
-for-incident-response-da1bfcfdcac
d

https://medium.com/splunk-maas/the-importance-of-mental-models-for-incident-response-da1bfcfdcacd
https://medium.com/splunk-maas/the-importance-of-mental-models-for-incident-response-da1bfcfdcacd
https://medium.com/splunk-maas/the-importance-of-mental-models-for-incident-response-da1bfcfdcacd
https://medium.com/splunk-maas/the-importance-of-mental-models-for-incident-response-da1bfcfdcacd

Write path, Sending messages (simplified!)

21

“All models are wrong and some are useful”. This diagram doesn’t describe the sequence of actions and isn’t accurate. The purpose is to get a high idea of the write path.

Read path, Consuming messages (simplified)

22

“All models are wrong and some are useful”. This diagram doesn’t describe the sequence of actions and isn’t accurate. The purpose is to get a high idea of the write path.

Contains Read ahead
caching. Improves
performance when
sticky reads are used.

Messaging workload edge cases to cover in workload
simulation

● Catch-up read / cold read

● Tailing read / hot read

● High fan-out (many subscriptions / consumers)

● Slow consumer & Fast producer

23

“Modify & Tune” in Apache Pulsar Kubernetes deployments

● Scaling out in Kubernetes deployments

● Scaling up in Kubernetes deployments

● Kubernetes resource requests (and limits)

● JVM settings for components

● Changing Cloud VM types

● Apache Broker configuration

● Broker cache

● Pulsar Load balancer

● Apache Bookkeeper client configuration

● Apache Bookkeeper configuration

24

Scaling options in Kubernetes deployments

25

Horizontal
Scaling

Vertical
Scaling

Horizontal scaling in Kubernetes

● Horizontal scaling by defining the amount of Broker, Bookie and Zookeeper nodes.

● Kubernetes StatefulSets are used for Brokers, Zookeepers and Bookies
● StatefulSet size can be increased for Brokers and Bookies to increase capacity without

taking down the cluster
● Scaling in Bookies (reducing cluster size) is currently a manual operation, which should be

done with care (bookie node decommissioning).
● Zookeeper cluster size modifications require more careful design. Zookeeper doesn’t scale

linearly, and it’s usually a better option to stick with a size of 3 or 5 nodes and instead scale
the nodes vertically.

● ReplicaSet is used for Proxies
● Size can be increased and decreased “online”

26

Vertical scaling in Kubernetes

● In Kubernetes, the scheduler will take care of running the workload (pods in most cases) on the
nodes with the requested CPU resources and memory amount

● More memory or CPU resouces can be allocated
● Disk volume sizes, types and amounts can be adjusted
● In a statefulset, all pods will get the same amount of resources

● Running an isolated pod on a single node is an additional option for vertical scaling

● Addresses the “noisy neighbor” problem caused by other Kubernetes pods

● Might be needed to achieve stable high network or disk IO throughput.

● This could also be a cost-effective option when an optimally sized VM type is used.

27

Java VM options tuning: heap size and direct memory

● Applies to Pulsar components
● Broker pods
● Proxy pods
● Bookie pods
● Zookeeper pods

● Environment variables to configure Java VM options
● PULSAR_MEM

● Default (2.10): -Xms2g -Xmx2g -XX:MaxDirectMemorySize=4g
● Recommendation: add -XX:+ExitOnOutOfMemoryError option to prevent leaving the process in

inconsistent state after there’s a possible OutOfMemoryError.
● PULSAR_GC

● Default (2.10): -XX:+UseG1GC -XX:MaxGCPauseMillis=10 -XX:+ParallelRefProcEnabled
-XX:+UnlockExperimentalVMOptions -XX:+DoEscapeAnalysis -XX:ParallelGCThreads=32
-XX:ConcGCThreads=32 -XX:G1NewSizePercent=50 -XX:+DisableExplicitGC

● PULSAR_EXTRA_OPTS
● Default (2.10): -Dpulsar.allocator.exit_on_oom=true …
● Be aware of https://github.com/apache/pulsar/pull/13563 and

https://github.com/apache/pulsar/issues/13382
28

https://github.com/apache/pulsar/pull/13563
https://github.com/apache/pulsar/issues/13382

Java process memory allocation & Linux OOM killer

● JVM processes consume more memory than max heap size + max direct memory

● Total memory = Heap + Code Cache + Metaspace + Symbol tables +

Other JVM structures + Thread stacks +

Direct buffers + Mapped files +

Native Libraries + Malloc overhead + …

● See https://stackoverflow.com/a/53624438

● For Pulsar & Bookkeeper, allocate about 20-25% more RAM than max heap size + max direct

memory

● For example for -Xmx2g -XX:MaxDirectMemorySize=4g, request (2+4) * 1.25 = 7.5GB of RAM

● Prefer Kubernetes resource requests instead of limits

29

https://stackoverflow.com/a/53624438/166062

Vertical scaling on cloud VMs

● Vertical scaling by defining / changing the cloud VM type for a Kubernetes node.
● The VM type applies to a complete Kubernetes node that will run multiple types of

pods by default.
● CPU and Memory are tied to a cloud VM type

● VM types vary on AWS, Azure and GCP
● AWS ec2 instance types: https://aws.amazon.com/ec2/instance-types/
● Azure VM sizes: https://learn.microsoft.com/en-us/azure/virtual-machines/sizes
● GCP machine types: https://cloud.google.com/compute/docs/machine-types

● Categorized
● General purpose
● Compute optimized
● Memory optimized
● Storage optimized
● Accelerated computing (GPU)

● Beside CPU and Memory, VM type usually also impacts options for storage performance,
storage options and available network bandwidth options

30

https://aws.amazon.com/ec2/instance-types/
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes
https://cloud.google.com/compute/docs/machine-types

Selecting a specific VM type for a Pulsar component type

● In GCP GKE, there are “node pools” that can be created with a specified “Machine type”
● Kubernetes “taints and tolerations” are used to ensure that only selected pods can be run on the

specific node pool
● Node pool contains a NoSchedule taint for a specific key-value pair
● Pods contain a toleration for the NoSchedule taint with the matching key-value pair

● Kubernetes “Pod affinity/anti-affinity” or “Pod Topology Spread Constraints” rules can be used to
ensure a desired spread of components across the nodes. For example, it’s possible to have a rule
that ensures that only one of a component type is run on a node. Rules can also be used to ensure
spread across multiple availability zones.

● For example, it’s possible to make 1 bookie run on a 1 specially configured Kubernetes node type.
● The benefit of this is that it’s possible to select an optimal VM type for running bookies.

● This might be necessary to achieve high IOPS and consistent IO performance.

31

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/

Cloud deployment storage options

● Cloud disks

● SSD is needed. Bookkeeper and Zookeeper are not optimized for spinning disks.

● IOPS vs. Throughput characteristics

● Bookkeeper tuning for reducing IOPS

● increase journalMaxGroupWaitMSec from 1 to 2. Also increase

journalBufferedWritesThreshold if that limit is reached with the workload.

● Increase the size of the journal size since larger cloud disks come with more IOPS

● Impact of disk size for performance on major cloud providers

● GCP: https://cloud.google.com/compute/docs/disks/performance

32

https://cloud.google.com/compute/docs/disks/performance

Other BookKeeper storage options

● Bookkeeper BP-46: Running without the journal

● https://bookkeeper.apache.org/bps/BP-46-run-without-journal/

● Available since 4.15.0 .

● Replication Factor, specified with write quorum, Qw

● Defaults to 2 in Pulsar

● In Bookkeeper, Qw ≥ QA . QA- 1 nodes can be lost safely.

● With the default E=QW=QA=2, it’s safe to lose 1 node at a time in a particular ensemble.

● With E=QW=QA=3, it’s safe to lose 2 nodes at a time in a particular ensemble.

● Sticky reads aren’t used unless E=Qw. That’s why ledger “striping” (E>Qw) will have a negative

impact on reads.

● Multiple journal disks, Multiple ledger disks

● Rackawareness / Availability Zone awareness 33

https://bookkeeper.apache.org/bps/BP-46-run-without-journal/
https://bookkeeper.apache.org/release-notes#4150

Pulsar Broker configuration tuning

● Broker cache tuning so that catch-up reads can be handled efficiently
● Some important improvements for broker cache have been contributed to Apache Pulsar

recently and aren’t yet released
● Support caching to drain backlog consumers: https://github.com/apache/pulsar/pull/12258
● Bug fix for cache eviction: https://github.com/apache/pulsar/pull/17273 , workaround is to set

cacheEvictionByMarkDeletedPosition=true
● Do not send duplicate reads to BK/offloaders: https://github.com/apache/pulsar/pull/17241

● Adjust settings based on metrics in dashboards. It’s currently an evolving topic since there are multiple important
improvements that haven’t been released. New dashboard is necessary to follow metrics.

● Bookkeeper client tuning for backpressure handling
● Evolving topic: https://github.com/apache/pulsar/issues/10439 ,

● Pulsar load balancer tuning
● Ensuring correct resource size for network and CPU

● Detecting network bandwidth doesn’t work in all cases and must be configured manually with the use
of loadBalancerOverrideBrokerNicSpeedGbps config option

● The usage of “-XX:ActiveProcessorCount=n” when Kubernetes resource requests are used for CPU
because of bug https://github.com/apache/pulsar/issues/17815

34

https://github.com/apache/pulsar/pull/12258
https://github.com/apache/pulsar/pull/17273
https://github.com/apache/pulsar/pull/17241
https://github.com/apache/pulsar/issues/10439
https://github.com/apache/pulsar/issues/17815

Key takeaways

● Follow a systematic
performance tuning method

● Create performance models to
help analysis and bottleneck
identification

● Incrementally learn how to tune
the deployment and brokers,
bookkeepers and zookeepers in
a way that meet your
requirements and use case

● Contribute to Apache Pulsar!
● Mailing list, GitHub

Discussions, Slack
35

We serve real-time
applications with an open
data stack that just works

36

