
Automating your Tomcat with Ansible

Coty Sutherland

What will be covered
● Who am i?

● Brief Overview of Ansible

● Problem

● Solution

● Demo

● Potential improvements

● Thoughts and/or Questions?

● Thanks!

Who am i?
● Coty Sutherland

● Software Engineering Manager @

Red Hat

● Java Developer

● Tomcat committer since 2016

● Fedora tomcat package maintainer

since 2015

● Husband and father of three

● East Coast, USA

Brief Overview of Ansible
“Ansible is a suite of software tools that enables infrastructure as code. It is open-source

and the suite includes software provisioning, configuration management, and

application deployment functionality.” - Wikipedia

It uses no agents and no additional custom security infrastructure, so it's easy to deploy

- and most importantly, it uses a very simple language (YAML, in the form of Ansible

Playbooks) that allow you to describe your automation jobs in a way that approaches

plain English.

https://en.wikipedia.org/wiki/Ansible_(software)

Why Ansible?
We’re not pushing this because it’s our product, we acquired Ansible because we think

its the best automation solution on the market.

We like drinking our own champagne…and better product integration.

Ansible is outside of the JVM (unlike ant or maven) and provides a more standardized

solution that that can be applied across multiple applications.

JBoss Web Server aka JWS
Throughout this presentation, I’ll mention JWS, which is the product containing the

Red Hat build of Apache Tomcat.

Product name could be better, but here we are :)

● Apache Tomcat is the main component

● Vault Extension for Tomcat

● Mod_cluster

● Other small components extending and supporting Apache Tomcat

Problem
● Managing lots of instances of Tomcat is difficult and costly.

○ Defining and verifying deployment strategies

○ Technical debt incurred by rolling your own solution

● A specific issue I’ll focus on here is about how testing new Apache Tomcat

releases is difficult and costly too.

○ Manual

○ Scripted/some automation solution

Solution

Solution, cont’d.
Automation with Ansible makes things easier!

Define and verify deployment strategies with Ansible’s declarative syntax (playbooks).

Repeatable state/status synchronization.

Testing your application on new Apache Tomcat releases is faster, easier, and

repeatable using Ansible.

Introducing the JWS Ansible Collection…

Main JWS collection features
Easily install and configure JWS instances

Automatically configure product features, like

mod_cluster

Uniform deployment strategies

Collection owner/maintainer is responsible

for automation management rather than

doing it yourself

By default, running the playbook will setup a

basic Tomcat installation running on port

8080 with no applications deployed.

Overview
The template for the server.xml.j2 (and

other conf files) covers the most basic

use case of the server.

You can use your own template files if

what we provided doesn’t work for you.

Full table table of options is documented

within the role’s readme:

https://github.com/ansible-middleware/j

ws/tree/main/roles/jws

https://github.com/ansible-middleware/jws/tree/main/roles/jws
https://github.com/ansible-middleware/jws/tree/main/roles/jws

server.xml template
syntax
The templates are Jinja2 syntax.

Here is an example of the configuration

template for the server.xml portion that

sets up the HTTPS connector for

Tomcat.

Example use case: testing
tomcat releases
Four main parts to this playbook:

● Get sources and run unit tests

● Download binary distro

● Configure and start Tomcat

● Deploy and test application

Demo!

https://asciinema.org/a/ViFSzdWCiPnfmeRoF6vZZcDFX

Potential Improvements
● Provide a major version and automatically pull and test available releases for that

major version

● Add logic to role in collection rather than a unique playbook

● Add property to check for development releases (after we include the logic into

the role)

● Startup with startup.sh rather than requiring systemd

● Do something with the test output!

● Check file hashes and keys after downloading

● Fail if a test in the test suite fails

● Set variables to skip tests, etc

● Add a small cluster to test on in our validation logic

What do you think? Interested in using or contributing?
For using: https://galaxy.ansible.com/middleware_automation/jws

For contributing: https://github.com/ansible-middleware/jws

Issues tracked on GitHub!

https://galaxy.ansible.com/middleware_automation/jws
https://github.com/ansible-middleware/jws

Questions?
Email: csutherl@apache.org

Twitter: @CotySutherland

LinkedIn: https://www.linkedin.com/in/cotysutherland/

mailto:csutherl@apache.org
https://twitter.com/CotySutherland
https://www.linkedin.com/in/cotysutherland/

Thanks!

