
Learning from 11+ years of
Apache Lucene™ benchmarks
Mike McCandless
Committer and PMC Member
Apache Lucene

Who am I?

● Lucene committer (16 years) and PMC member, Apache Member

● blog.mikemccandless.com

● Amazon Product Search

@mikemccand at Apache/Twitter/LinkedIn

2

https://blog.mikemccandless.com

Outline

Quick introduction to Apache Lucene

Overview of our benchmark tooling

Battle scars!

3

Apache Lucene

● High performance Java search engine

● Started in 1999, still active!

● OpenSearch, ElasticSearch, Solr build on Lucene

● Thank you Doug Cutting!

4

5

Indexing and Searching

● Add documents to the index

● Index consists of segments, periodically merged

● Search all segments

● Searching is latency sensitive!

Typically interactive.

● Indexing (usually) less so

● Visualizing merges

6

https://blog.mikemccandless.com/2011/02/visualizing-lucenes-segment-merges.html

Outline

Quick introduction to Apache Lucene

Overview of our benchmark tooling

Battle scars!

7

Why?

● Catch accidental performance regressions (sudden or gradual)

● Measure performance of a particular code change

● Which compression algo is the best default for stored fields?

● Micro vs macro benchmarks

● Original blog post (2011)

8

https://blog.mikemccandless.com/2011/04/catching-slowdowns-in-lucene.html

Timely example: Lucene 9.4 release delay

Issue and chart.

9

https://github.com/apache/lucene/issues/11824
https://home.apache.org/~mikemccand/geobench.html#search-polyMedium

Example: testing a code change

 QPS (stddev) base QPS (stddev) candidate Pct diff p-value

 OrHighNotMed 674.76 (4.8%) 680.97 (8.0%) 0.9% (-11% - 14%) 0.659
 PKLookup 153.45 (4.3%) 155.13 (3.8%) 1.1% (-6% - 9%) 0.394
 Fuzzy1 56.57 (9.1%) 57.76 (6.7%) 2.1% (-12% - 19%) 0.406
 BrowseMonthSSDVFacets 19.59 (10.4%) 20.03 (6.7%) 2.3% (-13% - 21%) 0.413
 AndHighHighDayTaxoFacets 19.22 (1.6%) 22.13 (2.2%) 15.1% (11% - 19%) 0.000
 AndHighMedDayTaxoFacets 25.62 (1.5%) 29.93 (2.2%) 16.8% (12% - 20%) 0.000
 MedTermDayTaxoFacets 12.96 (2.2%) 18.99 (3.4%) 46.5% (39% - 53%) 0.000
 OrHighMedDayTaxoFacets 3.97 (2.0%) 5.81 (4.3%) 46.5% (39% - 53%) 0.000
 BrowseMonthTaxoFacets 2.59 (10.9%) 11.16 (35.8%) 330.4% (255% - 423%) 0.000
 BrowseDateTaxoFacets 2.44 (9.7%) 13.12 (51.8%) 438.1% (343% - 553%) 0.000
 BrowseDayOfYearTaxoFacets 2.44 (9.7%) 13.13 (51.7%) 438.2% (343% - 552%) 0.000

Explore using SORTED_NUMERIC doc values to encode taxonomy ordinals for faceting
10

https://github.com/apache/lucene/issues/11100#issuecomment-1224312827

What?

● Open source ASL2: luceneutil

● Open corpora: Wikipedia, OpenStreetMaps, NYC Taxi Rides, europarl

● Python to script the benchmark, Java to run each iteration

● Multiple threads run a continuous mix of diverse search tasks

● Focus on single-thread time to run each query

● Also: stored fields, faceting, sparse documents, geo-spatial, text analysis

11

https://github.com/mikemccand/luceneutil

Nightly benchmarks

● Runs same set of (many) tasks / indexing every night

● Takes ~10 hours each night, on a fast machine (“beast3”)

● Tests latest mainline code, upgrade JDKs/OS frequently

● Creates interactive charts like Indexing and TermQuery

● Validates correctness … regolding

12

https://blog.mikemccandless.com/2021/01/apache-lucene-performance-on-128-core.html
https://home.apache.org/~mikemccand/lucenebench/indexing.html
https://home.apache.org/~mikemccand/lucenebench/Term.html

Profiling

Blunders.io integration

“The charts show you if something is
fast or slow, not why” – Adrien Grand

13

https://blunders.io/posts/lucene-bench-2021-01-10

Outline

Quick introduction to Apache Lucene

Overview of our benchmark tooling

Battle scars!

14

Signal vs noise

● Benchmarks are noisy thanks to GC, Hotspot compilation (plus OS, hardware)

● Discard warmup/outliers, run many iterations (tasks and separate JVMs)

● Added confidence (p-values) recently

● Two schools of thought
○ Try JVM flags like -Xbatch -Xint -XX:-TieredCompilation to reduce noise

○ Run at JVM defaults to match production (noise and all) and run more iterations

● -XX:+PrintCompilation -verbose:gc are helpful

● Noise over time stands out (example)

15

https://home.apache.org/~mikemccand/geobench.html#search-polyMedium

Deterministic Lucene index?

● A Lucene index has multiple segments…

● … but that impacts search performance and adds noise

● Solution?: single threaded indexing, but…

● … that’s slow (~6 hours)!

● Better solution: IndexRearranger (in progress)

● But not realistic? How to reflect improvements in merging?

16

Can we trust our benchmarks?

● Are results reproducible? Across different environments, developers, servers?

● Testing realistic workloads?

● Lurking bugs in the benchmarking tools?

● Is the nightly hardware too different from “normal” servers?

● Trust is vital – quickly address issues that erode trust!

17

The WTF

https://home.apache.org/~mikemccand/lucenebench/checkIndexTime.html

CheckIndex time

18

https://home.apache.org/~mikemccand/lucenebench/checkIndexTime.html

The WTF

● Time consuming to root cause!

● Often you notice it days/weeks later

● You may discover other WTFs (“crabs”)

● We need auto-WTF alarms

● Things may get even better after fixing:

example

19

https://github.com/apache/lucene/issues/11105

Too many changes at once!

● Sometimes nightly benchmarks are down for some time

● Sometimes we do a JDK upgrade, OS / Kernel upgrade, lots of Lucene changes land

● We push changes to the benchmarks themselves

● Suddenly benchmark breaks and we have to isolate

● Hardware, OS, JDK, benchmark tooling, Lucene can all change!

20

Benchmarks should not block good changes

● Benchmark is only one signal!

● If a change is a good simplification but makes things a bit slower, fine

● If a change makes slow queries faster, and fast queries a bit slower, fine

● A new feature should not have to satisfy any benchmarks before pushing

● It’s great to add new benchmarks for new features, but should not block the feature

21

When benchmarks catch bugs

● Sometimes nightly benchmark fails due to a Lucene bug

● Scary! It means our unit tests lack coverage…

● All hands on deck

● Example:

EXC: <vector:knn:<golf>[-0.07267512,...]>
java.io.EOFException: seek past EOF: MMapIndexInput(path="/index/lucene_bench_2021-01-25/index/_32.vec") [slice=vector-data]

at org.apache.lucene.store.ByteBufferIndexInput.seek(ByteBufferIndexInput.java:255)
at org.apache.lucene.store.ByteBufferIndexInput$MultiBufferImpl.seek(ByteBufferIndexInput.java:575)
at org.apache.lucene.codecs.lucene90.Lucene90VectorReader$OffHeapVectorValues.vectorValue(Lucene90VectorReader.java:432)
at org.apache.lucene.util.hnsw.HnswGraph.search(HnswGraph.java:118)

“OK, I was also able to reproduce this EOFException. It only seems to occur for the largest index, and I note that
the file being read is > 2GB, so my guess is we have an integer/long problem somewhere.” – Mike Sokolov

22

https://github.com/apache/lucene/issues/10754

New benchmarks are born!

● When a performance regression escapes release and nightly benchmarks

● We dig to root cause and fix it…

● … and (hopefully) add a new benchmark case to test it going forwards

● Example: #10866
○ Origin story for dedicated stored fields benchmark

○ … which then uncovered another (merging) performance issue!

● #203 (CombinedFieldsQuery) merged two days ago

● Faceting benchmarks have also improved recently

23

https://github.com/apache/lucene/issues/10866
https://github.com/mikemccand/luceneutil/pull/203

More lessons/challenges

● Hard work to keep benchmarks working – APIs change, new build tooling

upgrade OS and JDK, add coolant liquid, new features (e.g. KNN search)

● Hardware upgrade (three times now) causes misleading jumps across the board

● Benchmarks find exotic Lucene bugs

● A change in JDK’s defaults can hurt Lucene performance (e.g. FuzzyQuery1)

● Top hits sometimes break!

24

https://home.apache.org/~mikemccand/lucenebench/Fuzzy1.html

Limitations

● Benchmark code is scratchy and smelly and has no unit tests!

● Missing red-line QPS (capacity)

● Missing long-pole latencies (no open loop tests: coordinated omission bug)

● We lack coverage on some Lucene features (highlighting, joins)

● No micro-benchmarks (use JMH?)

● Every PR should be tested, quickly – GitHub actions?

Patches/PRs Welcome!
25

https://www.youtube.com/watch?v=lJ8ydIuPFeU

26

