Learning from 11+ years of
Apache Lucene™ benchmarks

~1 KB Wikipedia English docs
Mike McCandless
Committer and PMC Member =
Apache Lucene

600

400

Plain text GB/hour

/APACH E@eIN

NORTH AMERICA

OCTOBER 3 - 6, 2022 0
Jan2012 Jan2013 Jan2014 Jan2015 Jan2016 Jan2017 Jan20I8 Jan2019 Jan2020 Jan 2021 Jan 2022
NEW ORLEANS Date
LOUISIANA

Who am I?

e Lucene committer (16 years) and PMC member, Apache Member
e blog.mikemccandless.com
e Amazon Product Search

@mikemccand at Apache/Twitter/LinkedIn

https://blog.mikemccandless.com

Outline

Quick introduction to Apache Lucene
Overview of our benchmark tooling

Battle scars!

Apache Lucene

High performance Java search engine

Started in 1999, still active!

OpenSearch, ElasticSearch, Solr build on Lucene
Thank you Doug Cutting!

@ reddit

amazon -'- slqck

@ tinder

LinkedffJ wevir

Indexing and Searching T

eeeeee
555555

GGGGG

Add documents to the index

Index consists of segments, periodically merged
Search all segments

Searching is latency sensitive!

Typically interactive.

Indexing (usually) less so

Visualizing merges

https://blog.mikemccandless.com/2011/02/visualizing-lucenes-segment-merges.html

Outline

Quick introduction to Apache Lucene
Overview of our benchmark tooling

Battle scars!

Why?

Catch accidental performance regressions (sudden or gradual)
Measure performance of a particular code change

Which compression algo is the best default for stored fields?
Micro vs macro benchmarks

Original blog post (2011)

https://blog.mikemccandless.com/2011/04/catching-slowdowns-in-lucene.html

M hits/sec

London Boroughs Polygons Filter (avg 5.6K vertices)
‘ ‘ ‘ \

10 2020/03/08 22:20:21:
Geo3D: 0.54
LatLonPoint: 7.33
8 %%% | LatLonShape: 2.64
=
8 V [l Al 5 J
A Al

| "

L

-

s 1o

W

Jvﬂ T -y

L

Jul 2016

Jan 2017

Jul 2017

Issue and chart.

Jan 2018

Jul 2018

Jan 2019

Jul 2019 Jan 2020 Jul 2020 Jan 2021 Jul 2021 Jan2022 Jul 2022
Date

https://github.com/apache/lucene/issues/11824
https://home.apache.org/~mikemccand/geobench.html#search-polyMedium

Example: testing a code change

QPS (stddev) base QPS (stddev) candidate Pct diff p-value
OrHighNotMed 674.76 (4.8%) 680.97 (8.0%) 0.9% (-11% - 14%) 0.659
PKLookup 153.45 (4.3%) 155.13 (3.8%) 1.1% (-6% - 9%) 0.394
Fuzzyl 56.57 (9.1%) 57.76 (6.7%) 2.1% (-12% - 19%) 0.406
BrowseMonthSSDVFacets 19.59 (10.4%) 20.03 (6.7%) 2.3% (-13% - 21%) 0.413
AndHighHighDayTaxoFacets 19.22 (1.6%) 22.13 (2.2%) 15.1% (11% - 19%) 0.000
AndHighMedDayTaxoFacets 25.62 (1.5%) 29.93 (2.2%) 16.8% (12% - 20%) 0.000
MedTermDayTaxoFacets 12.96 (2.2%) 18.99 (3.4%) 46.5% (39% - 53%) 0.000
OrHighMedDayTaxoFacets 3.97 (2.0%) 5.81 (4.3%) 46.5% (39% - 53%) 0.000
BrowseMonthTaxoFacets 2.59 (10.9%) 11.16 (35.8%) 330.4% (255% - 423%) 0.000
BrowseDateTaxoFacets 2.44 (9.7%) 13.12 (51.8%) 438.1% (343% - 553%) 0.000
BrowseDayOfYearTaxoFacets 2.44 (9.7%) 13.13 (51.7%) 438.2% (343% - 552%) 0.000

Explore using SORTED NUMERIC doc values to encode taxonomy ordinals for faceting

https://github.com/apache/lucene/issues/11100#issuecomment-1224312827

What?

Open source ASL2: luceneutil

Open corpora: Wikipedia, OpenStreetMaps, NYC Taxi Rides, europarl
Python to script the benchmark, Java to run each iteration

Multiple threads run a continuous mix of diverse search tasks

Focus on single-thread time to run each query

Also: stored fields, faceting, sparse documents, geo-spatial, text analysis

11

https://github.com/mikemccand/luceneutil

Nightly benchmarks

Runs same set of (many) tasks / indexing every night
Takes ~10 hours each night, on a fast machine (“beast3”)
Tests latest mainline code, upgrade JDKs/OS frequently
Creates interactive charts like Indexing and TermQuery
Validates correctness ... regolding

12

https://blog.mikemccandless.com/2021/01/apache-lucene-performance-on-128-core.html
https://home.apache.org/~mikemccand/lucenebench/indexing.html
https://home.apache.org/~mikemccand/lucenebench/Term.html

fast or slow, not why” - Adrien Grand

Profiling

Profiler for cpu:

PROFILE SUMMARY from 561699 events (total: 561699)

tests.profile.mode=cpu
tests.profile.count=50

tests.profile.stacksize=1
tests.profile.linenumbers=false

Blunders Posts Docs

100, = JVM System
% M N Vv NAIALAA AL = JVM User

W iy == Machine Total CPU
:'i ME J“ A V./\/v \ = Heap usage
- == Heap reserved
20 + \'\ S\ - ion rate
?’L l A\ M \""\ -C i

19:48:30

19:48:45 19:49:00 19:49:15 19:49:30 19:49:45

4.26 % 22,99 % 0.70 % 3.4 cisss ?
GC Pause Time User CPU (avg) System CPU (avg) Allocation Rate (avg) Heap Usage (max)
Garbage
JVM Info CPU Allocations File 110 Socket I/0 Compilations Top Allocators Collections
“The charts sh i€ hing i
e charts show you if something is | —
IndexThreads$IndexThread.run() 1
(Iterable) 1
(Term, ble) I
()
(3) I 1
D « .merge() |[IndexWr
‘ (int, ble)
I eld(int, eField, : ‘ Teid) bdas:
erField.invert(int, 1d, boolean) ¢ i £ Documen
sHashPerField.add (BytesRef, int) ki i ilter.i q PerFiel Indexin
Hash.add() : ielhe‘# lter. i iyt ! PerFiel i iel FreqPro
iash !ytH IF ql 1 zer.i 1' 1 o 1 by PerFi
STACK iRefHash! Bytesi }ramnash?l?req! 1 i nH H L 1 J‘E k‘ Lucen
N e = =] 15 (e | L =] el [— 2 I

PERCENT
10.08%
9.63%
5.35%
4.22%
3.88%
3.82%
3.20%
2.99%
2.85%
2.72%
2.72%
2.41%
2.22%
1.95%

CPU SAMPLES
56630
54088
30071
23706
21797
21473
17981
16770
16031
15290
15278
13565
12480
10927

org.apache.lucene.util.BytesRefHash#equals()
org.apache.lucene.index.TermsHashPerField#writeByte()
org.apache.lucene.analysis.standard.StandardTokenizerImpl#getNextToken()
org.apache.lucene.util.StringHelper#murmurhash3_x86_32()
java.io.FileOutputStream#write()
org.apache.lucene.analysis.standard.StandardTokenizer#incrementToken()
org.apache.lucene.index.TermsHashPerField#writeVInt()
org.apache.lucene.index.IndexingChain$PerField#invert()
sun.nio.ch.FileDispatcherImpl#write0()
org.apache.lucene.index.MappedMultiFields$MappedMultiTermsEnum#postings()
java.lang.Character#codePointAt()
org.apache.lucene.util.BytesRefHash#findHash()
java.lang.invoke.VarForm#getMemberName ()
org.apache.lucene.analysis.standard.StandardTokenizerImpl#zzRefill()

Blunders.io integration

13

https://blunders.io/posts/lucene-bench-2021-01-10

Outline

Quick introduction to Apache Lucene
Overview of our benchmark tooling

Battle scars!

14

Signal vs noise

Benchmarks are noisy thanks to GC, Hotspot compilation (plus OS, hardware)
Discard warmup/outliers, run many iterations (tasks and separate JVMs)
Added confidence (p-values) recently

Two schools of thought
o TryJVM flags like -Xbatch -Xint -XX:-TieredCompilation to reduce noise
o Run at JVM defaults to match production (noise and all) and run more iterations

o -XX:+PrintCompilation -verbose:gc are helpful
e Noise over time stands out (example)

15

https://home.apache.org/~mikemccand/geobench.html#search-polyMedium

Deterministic Lucene index?

A Lucene index has multiple segments...

... but that impacts search performance and adds noise
Solution?: single threaded indexing, but...

... that’s slow (~6 hours)!

Better solution: IndexRearranger (in progress)

But not realistic? How to reflect improvements in merging?

16

Can we trust our benchmarks?

Are results reproducible? Across different environments, developers, servers?
Testing realistic workloads?

Lurking bugs in the benchmarking tools?
Is the nightly hardware too different from “normal” servers?
Trust is vital - quickly address issues that erode trust!

17

The WTF

1.6K

14K

Seconds

CheckIndex time (seconds)

Checklndex time

Jul 2017 Jan 2018

Jul 2018

Jan 2019

Jul 2019

Date

Jan 2020

Jul 2020

Jan 2021

Jul 2021

Jan 2022

Jul 2022

18

https://home.apache.org/~mikemccand/lucenebench/checkIndexTime.html

The WTF

Time consuming to root cause!

Often you notice it days/weeks later
You may discover other WTFs (“crabs”)
We need auto-WTF alarms

Things may get even better after fixing:

example

Queries/sec

All flat sorted-set doc values facet counts for last-modified day-of-year

Jul 2019

Jan 2020

Jul 2020
Date

Jan 2021

Jul 2021

19

https://github.com/apache/lucene/issues/11105

Too many changes at once!

Sometimes nightly benchmarks are down for some time

Sometimes we do a JDK upgrade, OS / Kernel upgrade, lots of Lucene changes land
We push changes to the benchmarks themselves

Suddenly benchmark breaks and we have to isolate

Hardware, OS, JDK, benchmark tooling, Lucene can all change!

20

Benchmarks should not block good changes

Benchmark is only one signal!

If a change is a good simplification but makes things a bit slower, fine

If a change makes slow queries faster, and fast queries a bit slower, fine

A new feature should not have to satisfy any benchmarks before pushing

It’s great to add new benchmarks for new features, but should not block the feature

21

When benchmarks catch bugs

e Sometimes nightly benchmark fails due to a Lucene bug
e Scary! It means our unit tests lack coverage...
e Allhands ondeck
e Example:
EXC: <vector:knn:<golf>[-0.07267512,...]>
java.io.EOFException: seek past EOF: MMapIndexInput(path="/index/lucene bench 2021-01-25/index/_32.vec") [slice=vector-data]
at org.apache.lucene.store.ByteBufferIndexInput.seek (ByteBufferIndexInput.java:255)

at
at
at

org.apache
org.apache
org.apache

.lucene.
.lucene.
.lucene.

store.ByteBufferIndexInput$MultiBufferImpl.seek (ByteBufferIndexInput.java:575)
codecs.lucene90.Lucene90VectorReader$OffHeapVectorValues.vectorValue (Lucene90VectorReader. java:432)
util.hnsw.HnswGraph.search (HnswGraph.java:118)

“OK, I was also able to reproduce this EOFException. It only seems to occur for the largest index, and | note that
the file being read is > 2GB, so my guess is we have an integer/long problem somewhere.” - Mike Sokolov

22

https://github.com/apache/lucene/issues/10754

New benchmarks are born!

When a performance regression escapes release and nightly benchmarks
We dig to root cause and fix it...

...and (hopefully) add a new benchmark case to test it going forwards
Example: #10866

o Originstory for dedicated stored fields benchmark
o ... which then uncovered another (merging) performance issue!

#203 (CombinedFieldsQuery) merged two days ago
Faceting benchmarks have also improved recently

23

https://github.com/apache/lucene/issues/10866
https://github.com/mikemccand/luceneutil/pull/203

More lessons/challenges

e Hard work to keep benchmarks working - APls change, new build tooling
upgrade OS and JDK, add coolant liquid, new features (e.g. KNN search)
Hardware upgrade (three times now) causes misleading jumps across the board
Benchmarks find exotic Lucene bugs

A change in JDK’s defaults can hurt Lucene performance (e.g. FuzzyQuery1)
Top hits sometimes break!

24

https://home.apache.org/~mikemccand/lucenebench/Fuzzy1.html

Limitations

Benchmark code is scratchy and smelly and has no unit tests!

Missing red-line QPS (capacity)

Missing long-pole latencies (no open loop tests: coordinated omission bug)
We lack coverage on some Lucene features (highlighting, joins)

No micro-benchmarks (use JMH?)

Every PR should be tested, quickly - GitHub actions?

Patches/PRs Welcome!

25

https://www.youtube.com/watch?v=lJ8ydIuPFeU

