
Revamping Spark™ Shuffle with Apache Celeborn™
at Pinterest Scale

Aria Wang, Nan Zhu

Oct 2024

Agenda

● Introduction

● Apache Celeborn™ @ Pinterest

● Taming Celeborn™ @ Pinterest

● Summary and Future work

About Us

Software Engineer II - Data Processing
Platform. Working on Spark on EKS

platform

Aria Wang Nan Zhu

Tech Lead of Spark Team in Pinterest,
working on Spark ecosystem in Pinterest

Pinterest owns one of largest Spark™ deployments in the
world

Spark™ on Hadoop® YARN with External Shuffle Service (ESS)

● ESS support is provided in Spark™ on
Hadoop® YARN version
a. scale down executors without losing

shuffle files
● Main Challenges

a. Uneven disk distribution → some
nodes get disk full due to large shuffle

b. Slow shuffle read → caused by busy
ESS with M * N full-mesh connections

Spark™ on EKS without ESS support

● No support of ESS for Spark™ on K8s
○ only vanilla shuffle

● No shuffle data management to
support dynamic allocation

○ Dynamic allocation
■ most effective way to achieve

“near-optimal” resource allocation
○ When executor is scaled down by

Dynamic Allocation → Shuffle data loss
→ recompute

 Key to the issues:
 Shuffle Data Management System

RSS (Remote Shuffle Service) 1.0 - Zeus based

RSS 1.0 - Main challenges

● Large partition skew causing disk issues
○ 1 partition maps to 1 RSS server strategy
○ if 1 partition > 3TB → Rss would fail the app to protect cluster

● Operational overhead
○ requires decommissioning Rss servers to make new deployment
○ usually takes 1-2 days

● Shuffle write performance
○ hash based shuffle writer slowness

● Requires shuffle files replication
○ to ensure job can read backup shuffle file when the primary one is lost (usually due to node

termination)
○ doubled the disk usage on RSS cluster

RSS 2.0 – Apache Celeborn™

● Open Source project started by Alibaba Corp (website
link)

● Intermediate data service for Big Data compute
engines to boost performance, stability, and flexibility

● Integrated with Spark™, Map-Reduce, and Flink®, to
provide remote shuffle service

● Used by LinkedIn, Stripe, and other peer companies
● Active community and support channels

https://celeborn.apache.org/
https://celeborn.apache.org/

RSS 2.0 – Apache Celeborn™

Server: scalability improvement

Rss 1.0 Rss 2.0: Apache Celeborn™

● 1 shuffle partition need 2
copies on Server side

● Server upgrade takes 1-2
days

● Heavily skewed jobs can
cause server disk full

● No load balancing

● stage retry to recover
shuffle files → 1 shuffle
partition 1 copy, reduced
disk & network by 50%

● Server rolling upgrade
takes within 10 mins

● Evenly spread skewed
partition to multiple
workers

● Load balancing supported
by manager nodes

Client: shuffle write improvement

● Significantly reduced the shuffle write overhead, and solved the bottleneck
of Rss 1.0

Celeborn™ Adoption in Pinterest
● Set up dedicated cluster for Celeborn™ on EKS

○ 3 Managers for HA, serving shuffle request
○ 500 Workers, serving shuffle data

● Cluster serving ~25,000 TB shuffle each day
● By switching to Celeborn™ from RSS 1.0

○ Decreased shuffle disk usage by 50%
○ Reduced computation resources by ~40%

● Current largest shuffle job ~700TB

Open-source solutions are rarely usable out of the box at
Pinterest's scale

Taming Apache Celeborn™ @ Pinterest

Main Challenges of Using Apache Celeborn™ in Pinterest

● Results validation failure
○ Inconsistent results of shuffle bytes , output file counts

● Significant performance regression comparing to ESS (for some applications)

● Vulnerability to Driver OOM with big shuffle size

Two Major Learnings

Learning 1: IO Buffer Management

Persisting Shuffle Data (1)

● Persisting Shuffle Data to Local Disk (using ESS or Spark™ native Shuffle)

Compression Input of Local Disk Shuffle

Input: ABCAB

Persisting Shuffle Data (2)

● Persisting Shuffle Data to Remote Disks (using Apache Celeborn™)

Compression Input of Remote Shuffle

Input: ABCAB

Compression Input of Remote Shuffle

Input: ABCAB

Compression Input of Remote Shuffle

Input: ABCAB

Different Input to Compression - Reason to Shuffle Stats
Disparity

Local Remote
Input: “ABCAB”

Input to compression stream:
AA,BB,C Input to compression stream:

A,B,A,C,B

Conclusion of Result Validation Challenge
● Different buffer management strategy => different inputs to the compression

● Different inputs to the compression => different compressed shuffle size

● Different compressed shuffle size => different partitions counts/output file
○ Adaptive Query Execution optimizations consuming shuffle size

■ Coalesce Partitions: collecting shuffle sizes and combine contiguous and “too-small”
partitions by coalescing

■ Optimizing Skew Join: checking shuffle size per partition and split too-big ones into
smaller based on different map task Ids

Challenge 2: Performance Regression due to Small Partitions

● Records for different partitions share the same buffer
● Records for different partitions are compressed and sent separately

Example Case

Mitigating the inefficiency by enlarging buffer adaptively

● Adaptive buffer management algorithm

○ C: number of data pushes
○ B: number of bytes pushed to remote workers
○ S: size of push buffer
○ M: max number of bytes for each partition hold in memory
○ T: user-defined threshold

S *= 2, if B/C * (1 + T) < M (double the buffer size when the average pushed
bytes is too small)

More details at PR

https://github.com/apache/celeborn/pull/2358

Conclusion of Inefficiency compression challenge

● Shared buffer among partitions => inefficient compression when having too
many small partitions

● Adaptively increasing buffer => proactively resolve the issue instead of
post-user-failure and manual tuning

Learning 2: Heavy Control Flow of Celeborn™ in Driver

● Spark applications with big shuffle
size are vulnerable to Driver OOM

○ Counter-intuitive: executors should be
more vulnerable

● Investigation with heap dump
○ Driver has a high volume of

“PartitionSplit” RPC messages to
process

Symptom and investigation

What is PartitionSplit?

● Load balancing strategy for Apache Celeborn™ Workers

● Partition 0 - 1G, Partition 1 -
99G (2 workers)
○ Load distribution

without partition Split:
1% v.s. 99%

○ Load distribution with
PartitionSplit 50% v.s.
50%

Why PartitionSplit overloaded Driver?

Driver OOM led by PartitionSplit (1)

Driver OOM led by PartitionSplit (2)

Driver OOM led by PartitionSplit (3)

Driver OOM led by PartitionSplit (4)

Driver OOM led by PartitionSplit (5)

Driver OOM led by PartitionSplit (6)

Driver OOM led by PartitionSplit (7)

Solutions to Driver Memory Pressure (1)

● Reduce the PartitionSplit frequency
○ Increase PartitionSplit threshold to 10G from default value (1G) globally

● Increase the throughput of PartitionSplit message processing
○ Introducing finer-grained locks when changing location of partitions

Coarse-grained lock in change partitions locations

Lock striping in changing partitions locations

Conclusion on Driver OOM issue

● Spark applications with big shuffle size requires more PartitionSplit to balance
load among workers

● PartitionSplit is a heavy operation on Driver side, leading to backlogs in RPC
queue of Driver => memory pressure

● Solutions
○ Reduce PartitonSplit frequency by increasing PartitionSplit threshold
○ Improve PartitionSplit processing throughput by introducing finer-grained locks

Pinterest - Actively working with Apache Celeborn Community

● Authoring or co-working on Apache Celeborn™ features
○ Adaptive Sort-based Buffer Management
○ Capacity-bounded inbox for RPC endpoint
○ Metrics Enhancement for ActiveSlots
○ Best Effort memory allocation in SortBasedBuffer
○ Fine-grained locks in PartitionSplit handling
○ Fixing OOM due to the concurrent connections in ShuffleReader
○ etc.

Summary & Future Work

● Apache Celeborn™ - Key solution to some most critical issues in running
Spark at massive scale

○ Noisy neighbours - resource reserving mechanism

○ Slow shuffle read - simplify M * N topology to N connections

○ Dynamic allocation support in K8S - manage shuffle data with a dedicated cluster

● Future work

○ Optimizing shuffle efficiency further to reduce the cost of Spark™ applications

○ Handling jobs with PB level shuffle

Thank You!

