Pinterest

Revamping Spark™ Shuffle with Apache Celeborn™
at Pinterest Scale

Aria Wang, Nan Zhu

Oct 2024

Agenda

e Introduction
e Apache Celeborn™ @ Pinterest
e Taming Celeborn™ @ Pinterest

e Summary and Future work

About Us

Aria Wang

Software Engineer Il - Data Processing
Platform. Working on Spark on EKS
platform

Nan Zhu

Tech Lead of Spark Team in Pinterest,
working on Spark ecosystem in Pinterest

Pinterest owns one of largest Spark™ deployments in the
world

ﬁoom workFlowsj [19“ j‘:‘i‘;""ﬁ] [~30 clusters J
100s of K Jobs 100s of PB Input | [100s of PB Shuffle
(J“;l‘/) (olaul!/) (Jau'k/)

the usage is e.xpomo(ing n a o(a\?ly basis

Spark™ on Hadoope YARN with External Shuffle Service (ESS)

e ESS support is provided in Spark™ on

[Compute Worker 1) Compute Worker 2 w
P P i
Hadoop® YARN version
Spark Executor 1 Spark Executor 2 . .
; a. scale down executors without losing
Mapper
shuffle files

> e Main Challenges

Esf;'a:' e SaFlo a. Uneven disk distribution — some
Service Service nodes get disk full due to large shuffle

b. Slow shuffle read — caused by busy

M *N k J - .
connections ESS with M * N full-mesh connections
M: #wmapper

N:#Reducers)

Metric 75th percentile Max
Compute Worker 1 Compute Worker 2 Compute Worker 3
Duration 37 min 1.3h
SPark Executor 1 Spark Executor 2 Spark Executor 3 GC Time 39s 1.5 min
Spill (memory) 526iB 57 GiB
Spill (disk) 168 1168
Output Size [Records 677.2 MiB [14791550 705.4 MiB [36720108

Shuffle Read Size / Records
Shuffle Read Blocked Time

1.1 GiB /17551514

11GiB /39478654

23 min

11h

Spark™ on EKS without ESS support

e No support of ESS for Spark™ on K8s Compute Worker)
o only vanilla shuffle Spark Executor
e No shuffle data management to &M“Pf‘er 1J (Mapper 2]
support dynamic allocation

o Dynamic allocation
m most effective way to achieve
“near-optimal” resource allocation chuffle_1
o When executor is scaled down by Shifiie 2
Dynamic Allocation — Shuffle data loss e

— recompute _)

Not readabld after
executor shuts down

Key to the issues:
Shuffle Data Management System

RSS (Remote Shuffle Service) 1.0 - Zeus based

Compute Worker 1

Spark Executor 1

l Mapper1 |

Compute Worker 2

Spark Executor 2

[Mapper 2 J [Mapper 3]
7 —
A

shuffle write

Rss Server 1

\

Compute Wo'y 1

Spark Ex utor 1

Rss Server 2

shuffle_.
partition_2

Rss Server 2

shuffle_.
Partition_}

1. Shuffle evenly distributed
across all RSS servers

|
Standdlone

RSS Cluster
|

|
|
|
I
!

i R 2. Shuffle read connections

reduced from M * N to N

(M: #mappers, N:#Reducers)

Reducer 2

RSS 1.0 - Main challenges

e Large partition skew causing disk issues
o 1 partition maps to 1 RSS server strategy
o if 1 partition > 3TB — Rss would fail the app to protect cluster
e Operational overhead
o requires decommissioning Rss servers to make new deployment
o usually takes 1-2 days
e Shuffle write performance
o hash based shuffle writer slowness

e Requires shuffle files replication
o to ensure job can read backup shuffle file when the primary one is lost (usually due to node
termination)
o doubled the disk usage on RSS cluster

RSS 2.0 — Apache Celeborn™

e Open Source project started by Alibaba Corp (website
link)

e Intermediate data service for Big Data compute
engines to boost performance, stability, and flexibility

e Integrated with Spark™, Map-Reduce, and Flink®, to
provide remote shuffle service

db kedIn, S d oth APAEHE
Used by LinkedIn, Stripe, and other peer companies eleboa’
C)

Active community and support channels

https://celeborn.apache.org/
https://celeborn.apache.org/

RSS 2.0 — Apache Celeborn™

Client - Li‘FeCycleMw\ager to
aoljus‘t shuffle locations base
on Partition size

Compute Worker Compute Worker
Spark-Driver Spark Executor
LifecycleManager] pc\rt.tnon e
kk (Celeborn)) JJ location k 20per

Register APP|/ shuffle slots

Server - Master R Celeborn HA Managers 7

1

Push|Shuffle Dat
Nodes can _’___,_.—,/”',—: Manager-1 Manager-2 Manager-3 : us urre Sata
rroviole 1 (active) (stanolby) (Stamo“:l/) '
\
oad Lala\ncing NLLU L LU L L L L L L L L L L L L
Regiester/Tiack Workers
O, N2

)
17
0
N
X
®
3
)
-
N
.
0
3
~
)
=
1
—

Fetch Shuffle Data

Compute Worker

[Spark Executor
<[Reducer
"

partition

location

Server: scalability improvement

Rss 1.0 Rss 2.0: Apache Celeborn™

e 1 shuffle partition need 2 e stage retry to recover

copies on Server side shuffle files — 1 shuffle

partition 1 copy, reduced

e Server upgrade takes 1-2 disk & network by 50%

days

e Server rolling upgrade

e Heavily skewedjobscan [——— > takes within 10 mins

cause server disk full e Evenly spread skewed

. partition to multiple

e No load balancing workers

e Load balancing supported
by manager nodes

Client: shuffle write improvement

B default [Rss 1.0 [Celeborn
40.00%

36.07% 35.65%

2

il

3]

(14

o 30.00%

E 22.92%
“

S 20.00%

—

(]

=

S

= 10.00%

2

t 0,
E 0.23% 1.08%
" 0.00%

Shuffle Size (TB)

Significantly reduced the shuffle write overhead, and solved the bottleneck
of Rss 1.0

Celeborn™ Adoption in Pinterest

e Set up dedicated cluster for Celeborn™ on EKS

o 3 Managers for HA, serving shuffle request
o 500 Workers, serving shuffle data

e Cluster serving ~25,000 TB shuffle each day

e By switching to Celeborn™ from RSS 1.0

o Decreased shuffle disk usage by 50%
o Reduced computation resources by ~40%

e Current largest shuffle job ~700TB

ActiveShuffleSize A sescription

,M‘ | ph W/l V% ; /ML/ %W
1 L w _— My
W_L/A/V‘/ " / vm/

Returned 1 series Retrieved 2879 points. DrillDown on selection Show Deployments & Incidents

Open-source solutions are rarely usable out of the box at
Pinterest's scale

Taming Apache Celeborn™ @ Pinterest

Main Challenges of Using Apache Celeborn™ in Pinterest

e Results validation failure
o Inconsistent results of shuffle bytes, output file counts

e Significant performance regression comparing to ESS (for some applications)

e Vulnerability to Driver OOM with big shuffle size

Two Major Learnings

4 N)

IO Buffer Management Heavy control Flow of Celeborn
in ESS v.s. Apacl«e Celeborn in Driver side

Learning 1: 10 Buffer Management

(N)

IO Buffer Mamage,w\ev\t Heavy control flow of Celeborn
in ESS v.s. Apacke Celeborn in Driver side

Persisting Shuffle Data (1)

e Persisting Shuffle Data to Local Disk (using ESS or Spark™ native Shuffle)

data transformation c <t
Merging per-partition ompressSiream

Iv\put Pata insert Ex‘ternaISorter data in each spi“ing file
= (sort by partition id, > || BufferedOutputStream
potentially spilling)

Compression Input of Local Disk Shuffle

Seill 1 Input: ABCAB

(II]

SPu“ 2

e ,

o T e e em en o Em o o G G G n n G G E e G e . = e e -

Merged Compression Stream in Order of Partitions

Tm e e e - ew s e e ww e - =

\,—\ v
o)
—
—
H
-

Persisting Shuffle Data (2)

e Persisting Shuffle Data to Remote Disks (using Apache Celeborn™)

Worker O
Parti‘tion a
data transformation
] gert partition b i
nput Data In-Mewory Sorter orker
- > (sort by partition id)
Partttion x
Pusl« data when
in-memory sorter uses Worker N

memorl/ more tL\am a

predefined threshold

Compression Input of Remote Shuffle

Input: ABCAB [= I P]

clear buffer, compress and send 4 and B to
2 different workers, then add ¢

add 4

e
!

buffer size is 2 records

clear buffer, compress and send 4 and C to
2 different workers, then add B

Compression Input of Remote Shuffle

Input: ABCAB [N I 4]

clear buffer, compress and send 4 and B to
2 different workers, then add ¢

J

add 4

e

clear buffer, compress and send 4 and C to
2 different workers, then add B

buffer size is 2 records

Compression Input of Remote Shuffle

Input: ABCAB [= I P]

clear buffer, compress and send 4 and B to
2 different workers, then add ¢

add 4

s

\l/ clear buffer, compress and send 4 and C to

buffer size is 2 records

2 different workers, then add B

Different Input to Compression - Reason to Shuffle Stats

Disparit
parity Input; “ABCAB”

Local Remote

Spi Il 1
, R clear buffer, r, compress and send 4 and B to
P2 P1 PO :)) o 2 differen t workers, then add ¢
e ompre: on am N raer o artitions 1

1 1
[¢ I B I 4 j\: P2 P1 PO | c
[} I
o I
Sl 2 1 [[I B I B J[A ! buffer size is 2 records “"UA
- -~ / :
1
o s | G 1)
N e e e ’ _

clear buffer, compress and send 4 and ¢ to
2 different workers, then add B

Input to compression stream:

AA,BB,C Input to compression stream:
ABA,C,B

Conclusion of Result Validation Challenge

e Different buffer management strategy => different inputs to the compression

e Different inputs to the compression => different compressed shuffle size

e Different compressed shuffle size => different partitions counts/output file
o Adaptive Query Execution optimizations consuming shuffle size
m Coalesce Partitions: collecting shuffle sizes and combine contiguous and “too-small”
partitions by coalescing
m Optimizing Skew Join: checking shuffle size per partition and split too-big ones into
smaller based on different map task Ids

Challenge 2: Performance Regression due to Small Partitions

Worker O]
Worker 1 J

Worker N]

e Records for different partitions share the same buffer
e Records for different partitions are compressed and sent separately

data transformation

Input Data ingery In-Memory Sorter
_— > (sort by partition id)

puslr\ data when
in-memory sorter uses
memory more than a

predefined threshold

W

Example Case

1MB buffer (
- (=
each part?t?on's records take 1KB
_

compress and send KB data for 1024 times, which is inefficient

we observed zstd-related Function calls takes a
sign?ﬁcant chunk in Flamegmpl«

Mitigating the inefficiency by enlarging buffer adaptively

e Adaptive buffer management algorithm

S *=2,if B/C *(1+T) <M (double the buffer size when the average pushed
bytes is too small)

o C:number of data pushes
o B:number of bytes pushed to remote workers

o S:size of push buffer

o M: max number of bytes for each partition hold in memory
o T: user-defined threshold

More details at PR

https://github.com/apache/celeborn/pull/2358

Conclusion of Inefficiency compression challenge

e Shared buffer among partitions => inefficient compression when having too
many small partitions

e Adaptively increasing buffer => proactively resolve the issue instead of
post-user-failure and manual tuning

Learning 2: Heavy Control Flow of Celeborn™ in Driver

IO Buffer Management Heavy control Flow of Celeborn
in ESS v.s. Apacl«e Celeborn in Driver side

Symptom and investigation
e Spark applications with big shuffle —

size are vulnerable to Driver OOM -

o Counter-intuitive: executors should be
more vulnerable

e Investigation with heap dump
o Driver has a high volume of

(b) 295.2 MB

“PartitionSplit" RPC messages to Touat 6353 e

process ~ © Problem Suspect 1

i One instance of "org.apache.celeborn.common.rpc.netty.Inbox" loaded by

: "sun.misc.Launcher$AppClassLoader @ 0x800043b0" occupies 356,640,944
{ (53.54%) bytes. The memory is accumulated in one instance of

| "java.util.LinkedList", loaded by "<system class loader>", which occupies

| 356,640,904 (53.54%) bytes.

What is PartitionSplit?

e Load balancing strategy for Apache Celeborn™ Workers

Celeborn Client

switch to another
worker after partition X-0
has Beyono(a threshold

Partition X-0

Celeborn

Worker

prevent skewed load among workers

Partition xX-1

Celeborn

Worker

Partition O - 1G, Partition 1 -
99G (2 workers)

©)

Load distribution
without partition Split:
1% v.s. 99%

Load distribution with
PartitionSplit 50% v.s.
50%

Why PartitionSplit overloaded Driver?

Driver OOM led by PartitionSplit (1)

Celeborn
Step 4 allocate new Master
worker based on workers'

status snapshots

E_iFecycleManager

DriverA

Step 3 Revive a partition

Step 5 send new

—
partition location .
Stef’m S| Partition X-0

\ Celeborn Worker

Step 6 push data

W to new worker
Partition X-1

Ce|eLorn Worker

Step 2 indicate
reaching of threshold

Celeborn Client

Driver OOM led by PartitionSplit (2)

Celeborn
Step 4 allocate new Master
worker based on workers'

status snapshots

E_iFecycleManager

DriverA

Step 3 Revive a partition

Step 5 send new
partition location

Celeborn Worker

reaching of threshold /
[—

Step 2 indicate
il

Step 6 push data

W to new worker
Partition X-1

Ce|eLorn Worker

Celeborn Client

Driver OOM led by PartitionSplit (3)

Celeborn
Step 4 allocate new Master
worker based on workers'

status snapshots

E_iFecycleManager

DriverA

Step 3 Revive a partition

Step 5 send new

partition location .
Step 1 write _S»| Partition X-0

\ Celeborn Worker

Step 6 push data

W to new worker
Partition X-1

Ce|eLorn Worker

Step 2 indicate
reaching of threshold

Celeborn Client

Driver OOM led by PartitionSplit (4)

Celeborn

Step ¢4 allocate new Master

worker based on workers'
status snapshots Y

E.i{:ecycleﬂ\anager

Drive_rA

Step 3 Revive a partition

Step 5 send new
partition location

Step 1 write

Partition X-0

Celeborn Worker

Step 6 push data

W to new worker
Partiti on x-1

Celeborn Worker

Step 2 indicate
reaching of threshold

Celeborn Client

Driver OOM led by PartitionSplit (5)

Celeborn
Step 4 allocate new Master
worker based on workers'

status snapshots

E_iFecycleManager

DriverA

Step 3 Revive a partition

Step 5 send new
partition location

Step 1 write

Partition X-0

Celeborn Worker

Step 6 push data

W to new worker
Partiti on xX-1

Celeborn Worker

Step 2 indicate
reaching of threshold

Celeborn Client

Driver OOM led by PartitionSplit (6)

Step 4 allocate new

worker based on workers'

status snapshots

Celeborn
Master

E_iFecycleManager

DriverA

Step 5 send new
partition location

Step 3 Revive a partition

Step 1 write

Partition X-0

Celeborn Worker

Step 6 push data 1~

to new worker

Partiti on xX-1 W

Celeborn Worker

k executor

Celeborn Client

Step 2 indicate
reaching of threshold

Driver OOM led by PartitionSplit (7)

Celeborn
Master

Step 4 allocate new
worker based on workers'
status snapshots

* tong of messages from clients accumulated in LM
q * driver memory utilization goes up over time until OOM
Driver,

Step 3 Revive a partition

Step 5 send new
partition location

Celeborn Worker

Step 6 push data

to new worker
Partition X-1

Celeborn Worker

Step 2 indicate
reaching of threshol

Celeborn Client

executor

Solutions to Driver Memory Pressure (1)

e Reduce the PartitionSplit frequency
o Increase PartitionSplit threshold to 10G from default value (1G) globally

e Increase the throughput of PartitionSplit message processing
o Introducing finer-grained locks when changing location of partitions

Coarse-grained lock in change partitions locations

4)

cl«angePartitionRequests

(ConcurrentHasL\MaP)
shuffle 0 -> add/remove requests
ConcurrentHasl«Mo«P(PO -> requests,
p1 -> requests, ..., pVN -> requests) lock on per shuffle level
>
shuffle 1 ->
C:ncurren‘tHasL\Map(pO ~> requests, too coarse-grained given Potentia“y
p1 > requests, ..., pN -> requests) 100s of 1000s of partitions

_ | Y,

Lock striping in changing partitions locations

allocate N locks per shuffle

fequest a lock with
PartitionIo(% N

changePartitionRequests
(ConcurrentHashMap)
shuffle 0 -> add/remove requests with the lock
ConcurrentHashMap(p0 -> requests, -~

—

p1 -> requests, ..., p¥ -> requests)

shuffle 1 ->
Concurren‘tHasl«Map(pO -> requests,
p1 -> requests, ..., pVN -> requests)

Conclusion on Driver OOM issue

e Spark applications with big shuffle size requires more PartitionSplit to balance
load among workers

e PartitionSplit is a heavy operation on Driver side, leading to backlogs in RPC
queue of Driver => memory pressure

e Solutions

o Reduce PartitonSplit frequency by increasing PartitionSplit threshold
o Improve PartitionSplit processing throughput by introducing finer-grained locks

Pinterest - Actively working with Apache Celeborn Community

e Authoring or co-working on Apache Celeborn™ features
o Adaptive Sort-based Buffer Management

Capacity-bounded inbox for RPC endpoint

Metrics Enhancement for ActiveSlots

Best Effort memory allocation in SortBasedBuffer

Fine-grained locks in PartitionSplit handling

Fixing OOM due to the concurrent connections in ShuffleReader

etc.

(®) Pinterest (st

o O O O O O

Summary & Future Work
e Apache Celeborn™ - Key solution to some most critical issues in running
Spark at massive scale
o Noisy neighbours - resource reserving mechanism
o Slow shuffle read - simplify M * N topology to N connections
o Dynamic allocation support in K8S - manage shuffle data with a dedicated cluster
e Future work

o Optimizing shuffle efficiency further to reduce the cost of Spark™ applications

o Handling jobs with PB level shuffle

Thank You!

