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Pinterest owns one of largest Spark™ deployments in the 
world



Spark™ on Hadoop® YARN with External Shuffle Service (ESS)

● ESS support is provided in Spark™ on 
Hadoop® YARN version
a. scale down executors without losing 

shuffle files 
● Main Challenges

a. Uneven disk distribution → some 
nodes get disk full due to large shuffle

b. Slow shuffle read → caused by busy 
ESS with M * N full-mesh connections



Spark™ on EKS without ESS support

● No support of ESS for Spark™ on K8s
○ only vanilla shuffle 

● No shuffle data management to 
support dynamic allocation 

○ Dynamic allocation 
■ most effective way to achieve 

“near-optimal” resource allocation
○ When executor is scaled down by 

Dynamic Allocation → Shuffle data loss 
→ recompute



     Key to the issues: 
               Shuffle Data Management System 



RSS (Remote Shuffle Service) 1.0 - Zeus based



RSS 1.0 - Main challenges

● Large partition skew causing disk issues
○ 1 partition maps to 1 RSS server strategy 
○ if 1 partition > 3TB → Rss would fail the app to protect cluster

● Operational overhead
○ requires decommissioning Rss servers to make new deployment
○ usually takes 1-2 days

● Shuffle write performance
○ hash based shuffle writer slowness

● Requires shuffle files replication
○ to ensure job can read backup shuffle file when the primary one is lost (usually due to node 

termination)
○ doubled the disk usage on RSS cluster



RSS 2.0 – Apache Celeborn™

● Open Source project started by Alibaba Corp (website 
link)

● Intermediate data service for Big Data compute 
engines to boost performance, stability, and flexibility

● Integrated with Spark™, Map-Reduce, and Flink®, to 
provide remote shuffle service

● Used by LinkedIn, Stripe, and other peer companies
● Active community and support channels

https://celeborn.apache.org/
https://celeborn.apache.org/


RSS 2.0 – Apache Celeborn™



Server: scalability improvement

Rss 1.0 Rss 2.0: Apache Celeborn™

● 1 shuffle partition need 2 
copies on Server side

● Server upgrade takes 1-2 
days

● Heavily skewed jobs can 
cause server disk full

● No load balancing

● stage retry to recover 
shuffle files → 1 shuffle 
partition 1 copy, reduced 
disk & network by 50%

● Server rolling upgrade 
takes within 10 mins

● Evenly spread skewed 
partition to multiple 
workers

● Load balancing supported 
by manager nodes 



Client: shuffle write improvement 

● Significantly reduced the shuffle write overhead, and solved the bottleneck 
of Rss 1.0



Celeborn™ Adoption in Pinterest 
● Set up dedicated cluster for Celeborn™ on EKS

○ 3 Managers for HA, serving shuffle request
○ 500 Workers, serving shuffle data 

● Cluster serving ~25,000 TB shuffle each day
● By switching to Celeborn™ from RSS 1.0

○ Decreased shuffle disk usage by 50%
○ Reduced computation resources by ~40% 

● Current largest shuffle job ~700TB



Open-source solutions are rarely usable out of the box at 
Pinterest's scale



Taming Apache Celeborn™ @ Pinterest



Main Challenges of Using Apache Celeborn™ in Pinterest

● Results validation failure 
○ Inconsistent results of shuffle bytes , output file counts

● Significant performance regression comparing to ESS (for some applications)

● Vulnerability to Driver OOM with big shuffle size 



Two Major Learnings



Learning 1: IO Buffer Management 



Persisting Shuffle Data (1) 

● Persisting Shuffle Data to Local Disk (using ESS or Spark™ native Shuffle)



Compression Input of Local Disk Shuffle   

Input: ABCAB



Persisting Shuffle Data (2)

● Persisting Shuffle Data to Remote Disks (using Apache Celeborn™)



Compression Input of Remote Shuffle   

Input: ABCAB



Compression Input of Remote Shuffle   

Input: ABCAB



Compression Input of Remote Shuffle   

Input: ABCAB



Different Input to Compression - Reason to Shuffle Stats 
Disparity

Local Remote
Input: “ABCAB”

Input to compression stream: 
AA,BB,C Input to compression stream: 

A,B,A,C,B



Conclusion of Result Validation Challenge 
● Different buffer management strategy  => different inputs to the compression

● Different inputs to the compression => different compressed shuffle size 

● Different compressed shuffle size => different partitions counts/output file  
○ Adaptive Query Execution optimizations consuming shuffle size

■ Coalesce Partitions: collecting shuffle sizes and combine contiguous and “too-small” 
partitions by coalescing 

■ Optimizing Skew Join: checking shuffle size per partition and split too-big ones into 
smaller based on different map task Ids



Challenge 2: Performance Regression due to Small Partitions 

● Records for different partitions share the same buffer 
● Records for different partitions are compressed and sent separately 



Example Case



Mitigating the inefficiency by enlarging buffer adaptively 

● Adaptive buffer management algorithm 

○ C: number of data pushes
○ B: number of bytes pushed to remote workers     
○ S: size  of push buffer
○ M: max number of bytes for each partition hold in memory
○ T: user-defined threshold 

S *= 2, if B/C * (1 + T) < M  (double the buffer size when the average pushed 
bytes is too small) 

More details at PR

https://github.com/apache/celeborn/pull/2358


Conclusion of Inefficiency compression challenge 

● Shared buffer among partitions => inefficient compression when having too 
many small partitions

● Adaptively increasing buffer => proactively resolve the issue instead of 
post-user-failure and manual tuning



Learning 2: Heavy Control Flow of Celeborn™ in Driver



● Spark applications with big shuffle 
size are vulnerable to Driver OOM 

○ Counter-intuitive: executors should be 
more vulnerable 

● Investigation with heap dump
○ Driver has a high volume of 

“PartitionSplit” RPC messages to 
process   

Symptom and investigation  



What is PartitionSplit?

● Load balancing strategy for Apache Celeborn™ Workers

● Partition 0 - 1G, Partition 1 - 
99G (2 workers)
○ Load distribution 

without partition Split: 
1% v.s. 99%

○ Load distribution with 
PartitionSplit 50% v.s. 
50%



Why PartitionSplit overloaded Driver?



Driver OOM led by PartitionSplit (1)



Driver OOM led by PartitionSplit (2)



Driver OOM led by PartitionSplit (3)



Driver OOM led by PartitionSplit (4)



Driver OOM led by PartitionSplit (5)



Driver OOM led by PartitionSplit (6)



Driver OOM led by PartitionSplit (7)



Solutions to Driver Memory Pressure (1)

● Reduce the PartitionSplit frequency 
○ Increase PartitionSplit threshold  to 10G from default value (1G) globally 

● Increase the throughput of PartitionSplit message processing
○ Introducing finer-grained locks when changing location of partitions 



Coarse-grained lock in change partitions locations



Lock striping in changing partitions locations



Conclusion on Driver OOM issue

● Spark applications with big shuffle size requires more PartitionSplit to balance 
load among workers

● PartitionSplit is a heavy operation on Driver side, leading to backlogs in RPC 
queue of Driver => memory pressure

● Solutions
○ Reduce PartitonSplit frequency by increasing PartitionSplit threshold
○ Improve PartitionSplit processing throughput by introducing finer-grained locks



Pinterest - Actively working with Apache Celeborn Community

● Authoring or co-working on Apache Celeborn™ features
○ Adaptive Sort-based Buffer Management
○ Capacity-bounded inbox for RPC endpoint 
○ Metrics Enhancement for ActiveSlots
○ Best Effort memory allocation in SortBasedBuffer
○ Fine-grained locks in PartitionSplit handling 
○ Fixing OOM due to the concurrent connections in ShuffleReader
○ etc.



Summary & Future Work 

● Apache Celeborn™ - Key solution to some most critical issues in running 
Spark at massive scale

○ Noisy neighbours - resource reserving mechanism 

○ Slow shuffle read - simplify M * N topology to N connections

○ Dynamic allocation support in K8S - manage shuffle data with a dedicated cluster

● Future work

○ Optimizing shuffle efficiency further to reduce the cost of Spark™ applications

○ Handling jobs with PB level shuffle 



Thank You!


