
Insecure By Design
How Not to Build
Your Next Data Pipeline
David Handermann, PMC Member of Apache NiFi, Software Engineer at Datavolo

Introduction – David Handermann

PMC Member
nifi.apache.org

Software Engineer
datavolo.io

Software Development Blog
exceptionfactory.com

Summary

1. Not Encrypting Communications
2. Not Authenticating Peers
3. Not Validating Inputs
4. Not Enumerating Outputs
5. Not Expecting Errors

Insecure by design: How does it happen?

Not Encrypting Communications

TLS is hard
Let’s go shopping...

Not Encrypting Communications

 HTTP instead of HTTPS
 Excessive trust in TLS Termination Gateways
 Log Collection without TLS
 Database Connections without TLS
 Caching and Coordination without TLS

TLS Issues: Unsupported or Misconfigured

Not Encrypting Communications

TLS Termination: Where is the boundary?

Not Encrypting Communications

TLS Gateways: Not Quite Zero Trust

TRUST HTTPS
HTTP

TLS

Not Encrypting Communications

 Which Version? TLS 1.0 and 1.1 are deprecated
 TLS 1.2 supports insecure cipher suites

 Which Cipher Suites? Avoid unauthenticated ciphers
 TLS 1.3 requires AES-GCM or ChaCha20-Poly1305

TLS Configuration: Is it actually secure?

Not Encrypting Communications

SFTP is easier
How is it configured?

Not Encrypting Communications

 Which Cipher Algorithms? Many legacy algorithms
 Prefer AES-GCM and ChaCha20-Poly1305

 Which Key Exchange Algorithms?
 Prefer ssh-ed25519 or rsa-sha2-256

 Which Message Authentication Code Algorithms?
 MD5 and SHA-1 should be disabled

SFTP Configuration: Which algorithms allowed?

Not Authenticating Peers

Are these the droids
you’re looking for?

Not Authenticating Peers

 Trusted Networks
 Custom Authorities with Mutual TLS
 Personal Usernames and Passwords
 User Access Tokens
 Shared Service Accounts

Pipeline Authentication: What could go wrong?

Not Authenticating Peers

 What if the gateway is misconfigured?
 What if the processing system is manipulated?
 Does the storage service permit elevated access?

Trusted Networks: What is the blast radius?

Not Authenticating Peers

 Certificate Authorities approve or deny peers
 Root and intermediate authorities issue certificates
 Organization authority or service authority?
 What is the identification strategy?

 Subject Principal or Alternative Names

Mutual TLS: Bidirectional Authentication

Not Authenticating Peers

 Ambiguous attribution: user or machine?
 Unintended access privileges
 Single point of responsibility

User Credentials: Not so service-oriented

Not Authenticating Peers

 Unclear system boundaries
 Credential rotation chain reactions
 Enterprise issues waiting to happen

Shared Credentials: Service access surprises

Not Validating Inputs

Validation
is a

Security Concern

Not Validating Inputs

Denial of Service
from

Resource Exhaustion

CWE-400: Uncontrolled Resource Consumption

Not Validating Inputs

1. Size
2. Shape
3. Semantics

Basic Validation Rules

Not Validating Inputs

 Unanticipated Data Rates
 Unexpected File Sizes
 Unsupportable Field Lengths
 Unconstrained Compression Ratios

Size Validation: What is too big to process?

Not Validating Inputs

 Just increase maximum heap size?
 Just increase system memory?
 Just hope it does not recur?

OutOfMemoryError: Java heap space

Not Validating Inputs

 A little validation goes a long way
 Apache NiFi RouteOnAttribute Processor

 Property: size-exceeded
 Value: ${fileSize:gt(1048576)}

Size Validation: How big is too big?

Not Validating Inputs

 Apache Avro Limits System Properties
 Apache POI ZipSecureFile Methods
 Jackson JSON StreamReadConstraints
 Jetty Maximum HTTP Request Header Size

Format Validation: How big is that value?

Not Validating Inputs

 Unexpected Errors from Unexpected Formats
 MIME Type Detection versus Expected Inputs

 Apache Tika provides extensible detection
 Apache NiFi IdentifyMimeType uses Apache Tika

Shape Validation: Paint by Magic Numbers

Not Validating Inputs

 Field Type Specifications
 Is it an int or a long?

 Field Value Ranges
 TCP port number 65536?

 Field Requirements versus Extensibility
 Just what is optionally required?

Semantic Validation: Some assembly required

Not Validating Inputs

 Common Formats
 Apache Avro Schema
 JSON Schema
 XML Schema

 Lack of versioning leads to lack of validation

Semantic Validation: Schema definitions

Not Enumerating Outputs

Do you know
where your data is going?

Not Enumerating Outputs

 How dynamic is the data?
 How flexible are the destinations?
 Who controls the routing?

Data Transmission: What and where?

Not Enumerating Outputs

{
 "id": 1,
 "action": "STARTED",
 "topic": "events",
 "uri": "https://events.local"
}

Data-Driven Routing: Field-based destination?

Not Enumerating Outputs

 NiFi EvaluateJsonPath Processor
 Property: destinationUri
 Value: $.uri

 NiFi InvokeHTTP Processor
 Property: URL
 Value: ${destinationUri}

Data-Driven Routing: Field-based flow

Not Enumerating Outputs

 NiFi EvaluateJsonPath Processor
 Property: topic
 Value: $.topic

 NiFi InvokeHTTP Processor
 Property: URL
 Value: https://events.local/${topic}

Data-Driven Routing: Parameterized flow

Not Expecting Errors

No plan for failure
is

planning to fail

Not Expecting Errors

 Terminated failure relationships
 Infinite retries without backoff strategies
 Unconstrained logging
 Missing or misconfigured socket timeouts
 Custom code with minimal verification

Ignoring Murphy’s Law

Not Expecting Errors

 Ignoring errors leads to data loss
 Poor exception handling leads to performance loss
 Excessive logging exhausts resources

Failure Handling: Availabilty and integrity

Not Expecting Errors

 Infinite timeouts lead to blocked threads
 Short timeouts lead to unexpected closed streams
 Uncoordinated timeouts and retries waste cycles

Socket Timeouts: How long is too long?

Not Expecting Errors

 System.exit() is not error handling
 System properties are not component configuration
 Reading all bytes is not stream processing

Custom Code: Works on my machine?

Conclusion

Security
is a

cross-cutting concern

Conclusion

1. Encrypt Communications Correctly
2. Authenticate Peers Properly
3. Validate Inputs Extensively
4. Enumerate Outputs Completely
5. Expect Errors Comprehensively

Secure pipelines by design

Conclusion

Stay connected
exceptionfactory.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

