
Mt. Oxford
Mon 4:50 pm - 5:30 pm

Presentation
Overview
DataStax has recently published Montecristo, their
Cassandra/DSE cluster health check tool, to datastax-
labs on GitHub.

This session provides an overview of its features, the
steps to install and run it, and helpful tips and tricks
to get it working.

Meet Dave Herrington
• - Electrical Engineering
• Oracle Corp. – Oracle Financials FINCON Team
• Founder DARC Corp. – Oracle E-Business Suite Platinum Partner
• CIO Parelli – Global training provider, Netflix streaming model
• Founder & Chief Engineer at RhinoSource (since 2012)

– Located in San Francisco Bay Area, CA
– DataStax Enterprise and Cassandra specialization
– Have helped many large & small DataStax customers
– Cluster architecture, data model validation, load & stress testing, health

checkups, upgrades, troubleshooting
– Key Partners: DataStax, Innominds, AxonOps and AWS

www.rhinosource.com

http://www.rhinosource.com/

Presentation Outline

• Presentation Overview
• History and Contributor Credits
• Health Check Process Overview
• Building, Deploying and Running ds-collector
• Installing and Running Montecristo
• Q&A

Products Covered Today

• DataStax Diagnostic Collector (ds-collector)
– Apache-2.0 License
– On GitHub

• DataStax Montecristo
– Apache-2.0 License
– On GitHub

History of Montecristo

• Montecristo was originally created as an
internal project by The Last Pickle, who were
acquired by Datastax in 2020.

• Datastax Professional Services adopted and
further enhanced the project into the
codebase that is published in GitHub.

Author & Contributor Credits
• DataStax Diagnostic Collector (ds-collector)

– Andrew Hogg
– Alex Ott
– Michael Semb Wever
– Madhavan Sridharan
– Phil Miesle
– Radovan Zevoncek

• Montecristo
– Andrew Hogg
– Michael Semb Wever
– Jeremy Artero
– Pierre-Yves de Britto
– Edward Capriolo
– Joaquin Casares
– Alexander Dejanovski
– Rebecca Downes
– Marvin Froeder
– Miles Garnsey
– Anthony Grasso
– Jon Haddad

– Alexander Dejanovski
– Brendan Cicchi
– Anthony Grasso
– Joel Serrano
– Jon Moses
– Romain Anselin

– Jeremy Hanna
– Nate McCall
– Phil Miesle
– Kareem Missoumi
– Yuki Morishita
– Aaron Morton
– Alex Ott
– Alain Rodriguez
– John Sanda
– Radovan Zvoncek

Cassandra Health Check
Process Overview

Health Checks???
• What is a cluster health check?
• A periodic analysis of cluster configuration and performance

to highlight problems that need to be addressed.
• How does it work?

• We collect diagnostic and configuration files from the nodes
of a DSE or Cassandra cluster (“diagnostic tarballs” aka
“diagnostic snapshots” aka “support bundles”)

• Then, we analyze this data set with automated scripts to
identify issues and areas of improvement.

• What is the output/deliverable?
• A detailed report with a summary of recommendations:

• Immediate, Near-Term and Long-Term

Health Check Process
• Stage 1

• Collect Diagnostic Tarballs from DSE or Cassandra cluster using
the open source DataStax Diagnostic Collector: ds-collector

• Stage 2
• Run open source Montecristo on the collected tarballs to

Produce Health Check Report
• Stage 3

• Fix your cluster issues

• (repeat every 6-12 months)

• DataStax formerly would do this service for customers, but now
companies must do it themselves or have a DataStax partner like
RhinoSource perform these health checks for them.

Jumpbox/Bastion Server

Machine with Montecristo installed

Health Check Process
DSE or Cassandra Cluster

ds-collector

Diagnostic
tarball(s)

montecristo Health Check
Report (html)

Diagnostic
tarballs

Diagnostic
tarballs

Diagnostic
tarballs

Diagnostic
tarballs

Diagnostic
tarballs

Diagnostic
tarballs

Stage 1

Stage 2 Stage 3
Fix

issues

Output: Health Check Report

> 60 pages

Created in HTML,
can save a PDF.

Can convert the
PDF to Word doc.

Health Check Report Contents
• Operations Recommendations

– Cache Usage
– High SSTable Counts
– Cassandra Logs Analysis

• Blocked flush writers
• Dropped Hints
• Hinted Handoff Tasks
• Dropped Messages
• JVM Garbage Collection (GC) Pauses
• Large batch warnings
• Failed Repair Sessions
• Commit Log Sync Warnings
• Long Pause Warnings
• Compacted Large Partitions
• Aborted Hints
• Tombstone Warnings
• Aggregation query warnings
• Prepared statement discard warnings

– Astra Guardrail Checks
– Table Operations

• Read Ops/Hr by Consistency Level
• Write Ops/Hr by Consistency Level

• Summary of findings
– Immediate, Near-term and Long-term changes

• Infrastructure Overview and Recommendations
– Cluster Node Listing
– Storage Configuration
– O/S Configuration

• Swap, NTP, Java version, Limits
– DSE or Cassandra Configuration

• Customized settings
• Mismatches and missing configs
• Best practice recommendations
• Java Heap and GC settings

– Security Configuration

• Data Model Overview and Recommendations
– Replication strategy
– Indexes
– Unused tables
– gc_grace_seconds
– Custom, UDT and collection data types
– Bloom filters
– Materialized views
– Compaction settings
– Table compression settings
– Read-heavy tables, Top-10 Tables by size, by reads, by writes

Deep Dive:
Health Check Process

Stage 1:
Diagnostic Tarball Collection

with ds-collector

Health Check Process:
Stage 1: Tarball Collection

DSE or Cassandra Cluster

ds-collector

Diagnostic
tarballs

montecristo Health Check
Report (html)

Jumpbox/Bastion Server

Diagnostic
tarballs

Diagnostic
tarballs

Diagnostic
tarballs

Diagnostic
tarballs

Diagnostic
tarballs

Diagnostic
tarballs

Stage 1

Deploying ds-collector
• Requires multiple steps:
– Download latest source .tar.gz from

• https://github.com/datastax/diagnostic-
collection/releases

– Build from source ß Cannot run the source
• Recommend doing the build on Mac OS X
• YMMV building with Linux
• Docker must be running on the build machine

– Deploy the built ds-collector tar.gz onto the
collection machine
• Can be Linux or Mac OS X
• Works equally well on both
• Yes, you can build on Mac OS X and deploy to Linux.

https://github.com/datastax/diagnostic-collection/releases
https://github.com/datastax/diagnostic-collection/releases

Building the ds-collector
1. Download source (tar.gz) from Github

Ø https://github.com/datastax/diagnostic-collection/releases

2. Uncompress the source tar.gz:
 tar xvf diag*.tar.gz

3. Set environment variables:
 export ISSUE=DSE-001 ß just make up a JIRA ticket number
 export is_dse=true ß only if DSE

4. Make sure Docker is installed and running on your build
machine.

Link to doc

https://github.com/datastax/diagnostic-collection/releases
https://github.com/datastax/diagnostic-collection

Building the ds-collector
5. From the uncompressed diagnostic-collection-* directory, build it

using the make command:
 make

6. Deploy the built ds-collector.*.tar.gz that is created to the machine
to be used to do the tarball collection.
• Or, if using the same machine to both build and run the tarball

collection, move it (up) outside of the build directory.
• Again, you can build on a Mac and deploy the built collector to Linux.

Running ds-collector: req’s

System Requirements for tarball collection machine:
• Linux or macOS X machine
– NOTE: macOS X requires coreutils and sshpass to be

installed using ”brew install”.
• Stand-alone machine: Do not install ds-collector on

a cluster node
• Can ssh to all cluster nodes
• ssh user on nodes should have sudo privilege
• Has docker or k8s access, if nodes run inside docker

or k8s

Running ds-collector: Steps
1. Transfer the built ds-collector.*.tar.gz from the build machine to the

collection machine (if not the same machine)
2. Uncompress it (tar xvf ds-collector*.tar.gz)
3. cd ./collector
4. Edit the config file collector.conf, uncommenting configs, as needed:

Ø Customize for your cluster’s directory locations, as needed (logHome,
configHome)

Ø Set your ssh parameters (userName, sshPassword)
Ø Uncomment skipS3="true" (if not already uncommented), to disable

the S3 transfer feature
Ø Add cqlsh credentials if required (cqlshUsername and cqlshPassword)
Ø If for DSE, uncomment and set is_dse="true" (if not already set

correctly)
Ø Browse other parameters and set if needed for your cluster

deployment (e.g. cqlshSSL, dt_opts if you have extra security in place)

../../../../../../../../Desktop/collector.conf

Running ds-collector
1. Run ds-collector in test (-T) and verbose (-v) modes to ssh & resolve any issues

reported:
./ds-collector -T –v -f collector.conf -n <cassandra_contact_node>

Ø Review the log created under /tmp/datastax/ds-collector*
2. Run ds-collector to extract (-X) from 1 node only (-d) to troubleshoot any issues

(looko for any NOTOK messages):
./ds-collector -X -d -v -f collector.conf -n <cassandra_contact_node>

3. See the TROUBLESHOOTING.md page and fix configurations to solve issues.
4. Run ds-collector to extract from all nodes:

./ds-collector -X -f collector.conf -n <cassandra_contact_node>

https://github.com/datastax/diagnostic-collection/blob/master/ds-collector/TROUBLESHOOTING.md

Accessing ds-collector Tarballs
• A diagnostic tarball file is generated for each

node under /tmp/datastax
– <host1name>_<timestamp>.tar.gz

– <host2name>_<timestamp>.tar.gz
– <host3name>_<timestamp>.tar.gz

• Transfer these .tar.gz files to the machine with
Montecristo installed.

• Or these files can be uploaded to DataStax or
a DataStax partner to run a health check.

Deep Dive:
Health Check Process

Stage 2:
Running Montecristo to Produce

Health Check Report

Machine with Montecristo installed

Health Check Process:
Stage 2: Running Montecristo

DSE or Cassandra Cluster

ds-collector

Diagnostic
tarball(s)

montecristo Health Check
Report (html)

Diagnostic
tarballs

Diagnostic
tarballs

Diagnostic
tarballs

Diagnostic
tarballs

Diagnostic
tarballs

Diagnostic
tarballs

Stage 2

Montecristo
• System Requirements:
– Linux or mac OS X machine (not a cluster

node)
– Java 8 installed
– Docker Desktop installed
– Hugo, zip and jq installed
– Has access to diagnostic tarballs

• Download site:
– https://github.com/datastax-

labs/Montecristo

https://github.com/datastax-labs/Montecristo
https://github.com/datastax-labs/Montecristo

(Let’s Cover the Install Later)
• Let’s assume Montecristo is already installed.
• We’ll go over the installation steps at then end.
• Let’s run it!

Staging the ds-collector Tarballs
• Create a ./ds-discovery directory on the machine that will run Montecristo. (Make sure there

are no spaces in the path above this directory).
• Under that create a directory for your issue #, e.g. DSE-001.
• Place the tarballs collected by ds-collector from each node in that directory:

./ds-discovery/
./DSE-001/

./<node1name>_<timestamp>.tar.gz

./<node2name>_<timestamp>.tar.gz

./<node3name>_<timestamp>.tar.gz

• Under the Issue directory, create a directory named “extracted”.
• Uncompress each tarball and move the uncompressed directory under the “extracted”

directory, shortening the directory name to just the node’s name (remove the timestamp), so
it looks like this:

./ds-discovery/
./DSE-001/

./extracted/
./<node1name>/
./<node2name>/
./<node3name>/

Running Montecristo
• Run it:

cd ./Montecristo
./run.sh -d -c ~/ds-discovery/DSE-001/extracted/ DSE-001

– The last parameter names the artifacts directory
• Answer questions when prompted:

– Do you want to copy Artifacts? Y
– Decompress again? N
– Run conversion process? Y
– Asks again, run the conversion process? Y

• It can take a while, especially with many nodes.

• When finished, Montecristo starts the hugo web server on the
machine to make the report accessible.

Access Health Check Report

Web Server is available
at http://localhost:1313/
Press Ctrl+C to stop

Can print report as a PDF.

You can convert PDF to
Word within MS Office.

http://localhost:1313/

Installing Montecristo
• System Requirements:
– Linux or Mac machine
– Has access to diagnostic tarball directory
– Cannot be run on a cluster node

• Download site:
https://github.com/datastax/diagnostic-
collection/releases

https://github.com/datastax/diagnostic-collection/releases
https://github.com/datastax/diagnostic-collection/releases

Installing Montecristo: Dependencies
Install Dependencies

• Install java 8 JDK with hotspot, hugo and jq (Mac OS X instructions)
• Ensure that zip and unzip are installed (they probably are already)

brew tap homebrew/cask-versions
brew install --cask temurin8
brew install hugo
brew install jq
brew install zip
brew install unzip

• Make sure Java 8 JDK is the default java:

java -version

• If not, set JAVA_HOME to point to the correct java, for example (set for your version):

/usr/libexec/java_home -V
export JAVA_HOME=`/usr/libexec/java_home -v 1.8.0_412`

Installing Montecristo: Gradle fix

• Even with JAVA_HOME set correctly, Gradle had an issue with the Java version on Mac OS X,
when running Montecristo.

• To fix, I created the file ~/.gradle/gradle.properties, containing the line:

org.gradle.java.home=/Library/Java/JavaVirtualMachines/temurin-8.jdk/Contents/Home

• I then manually built Gradle with debug and stacktrace turned on:

cd ~/montecristo/Montecristo/montecristo
./gradlew build install --stacktrace --debug -x test

• This fixed the gradle build problem.

• I don't think the setting of JAVA_HOME matters after the gradle.properties file is created.

Installing Montecristo: Make Hugo

Make Hugo

• Run the first time after new install:

cd montecristo/src/main/resources/
./mkhugozip.sh

Installing Montecristo: DSE jars
To enable the conversion and reading of Datastax Enterprise sstablemetadata files, get the 6.8.17 version of DSE:

curl -L https://downloads.datastax.com/enterprise/dse-6.8.17-bin.tar.gz | tar xz

Create libs directory under Montecristo’s ./dse-stats-converter:

mkdir ./montecristo/Montecristo/dse-stats-converter/libs

Copy these libs from DSE 6.8 Cassandra/lib to ./dse-stats-converter/libs:

• agrona-0.9.26.jar
• dse-commons-6.8.17.jar
• dse-db-all-6.8.17.jar
• durian-3.4.0.jar
• jctools-core-2.1.2.jar
• netty-all-4.1.25.7.dse.jar
• rxjava-2.2.7.jar

If the dse-db-all.jar file exists in that folder, it will automatically enable the option within the run.sh script to offer the option
of converting the files.

Helpful Links

• DataStax Diagnostic Collector (ds-collector):
– https://github.com/datastax/diagnostic-collection

• Montecristo
– https://github.com/datastax-labs/Montecristo

• DSE and Apache Cassandra Expertise
– www.rhinosource.com

https://github.com/datastax/diagnostic-collection
https://github.com/datastax-labs/Montecristo
http://www.rhinosource.com/

Jumpbox/Bastion Server

Machine with Montecristo installed

Health Check Process: Q&A
DSE or Cassandra Cluster

ds-collector

Diagnostic
tarball(s)

montecristo Health Check
Report (html)

Diagnostic
tarballs

Diagnostic
tarballs

Diagnostic
tarballs

Diagnostic
tarballs

Diagnostic
tarballs

Diagnostic
tarballs

Stage 1:

Stage 2: Stage 3
Fix

issues

Download This Presentation
https://github.com/daveherrington/

daveh-cassandra-presentations

https://github.com/daveherrington/daveh-cassandra-presentations

Please Contact Me

https://www.linkedin.com/in/daveherrington/
GitHub: daveherrington
herry@rhinosource.com

Phone: 650-360-3143
We can run the Montecristo health check

for you, if you collect and upload the
diagnostic tarballs to our website:

www.rhinosource.com

https://www.linkedin.com/in/daveherrington/
mailto:herry@rhinosource.com
http://www.rhinosource.com/

