
Performance Engineering
Track, Oct 7, Denver 2024
Paul Brebner and Roger Abelenda (chairs)



Welcome to Denver! The track train



Who am I?
• Why Performance Engineering & Open Source?

• Background (too many decades) in R&D in 
distributed systems and performance engineering

• Before joining Instaclustr CTO of a NICTA startup
• Automated performance modelling from distributed traces
• Lots of Australian government and enterprise customers

• 7 years+ as Instaclustr technology evangelist
• Open Source Big Data technologies
• Opportunity for regular performance & scalability experiments 

and analysis
• Lots of blogs and conference talks, invited keynotes (e.g. 

International Conference on Performance Engineering cloud 
workshop), etc

• First ApacheCon talks Las Vegas & Berlin 2019

Head of Kafka, Prague (Paul Brebner)



Motivation? First CFP!

• Why a Performance Engineering Track?
• Because many Apache projects address domains with software performance 

and scalability challenges (E.g. Web, Cloud, Databases, Streaming Data, 
Big Data, Data Analytics, Search, Geospatial, etc) = Problems

• While others provide performance engineering tools (E.g. benchmarking, 
testing, monitoring, etc) that are widely used = Solutions

• The track will provide opportunities for cross-fertilization between projects of 
different software categories and maturity
• Including incubator projects

• Open Source + Performance Innovation? (E.g. code 
analysis, simulation?)
• Not yet, but one talk on byte code analysis for Camel was close, and LLMs 

have potential!
• “Performance Prediction From Source Code Is Task and Domain Specific”
• https://ieeexplore.ieee.org/document/10174021

• CFPs and track summaries are all in my LinkedIn profile

(1st train) “Bullet Trains” are Fast and Scalable! (Source: Adobe 
Stock)

https://ieeexplore.ieee.org/document/10174021


Previous track events

1. ApacheCon NA New Orleans 2022 – Sharan Foga

2. C/C Asia Beijing 2023 - Willem Jiang

3. C/C NA Halifax 2023 - Roger Abelenda

4. C/C EU Bratislava 2024 - Stefan Vodita

5. C/C Asia Hangzhou 2024 - Yu Xiao

6. C/C NA Denver 2024 - Roger Abelenda

Approx 25% acceptance rate, 34 talks, 600+ attendees

Talk acceptance algorithm = Performance Engineering + Apache Project (or open source value) + Interesting

Thanks to co-chairs (often same time-zone as event), reviewers, and volunteers and planners/conference PC



Track train mascots



Talks on diverse performance engineering topics
and these technologies

• Apache Ozone

• Apache Cassandra

• Apache Camel

• Apache Lucene

• Apache Iceberg

• Apache Impala

• Oxia

• Apache Skywalking

• Apache Fury

• Apache Kafka

• Apache JMeter & Selenium

• Kubernetes

• Apache Arrow

• Java Profiling

• Apache Flink

• Apache Spark/ML

• Apache Hadoop



Today’s talks

1. 10:50 am - Paul Brebner (co-chair), Making Apache Kafka even faster and more scalable

2. 11:45 am - Roger Abelenda (co-chair), Skywalking Copilot: A performance analysis assistant

Lunch 12:25 (95 min)

3. 2:00 pm - Ritesh Shukla, Tanvi Penumudy, Overview of tools, techniques and tips - Scaling Ozone
performance to max out CPU, Network and Disk

4. 2:50 pm - Shawn McKinney, Load testing with Apache JMeter

Coffee Break 3:30 pm (30 min)

5. 4:00 pm - Chaokun Yang, Introduction to Apache Fury Serialization
First Apache Incubator talk in the track!

6. Your talk here next year J (we lost a talk at the last minute due to visa issues)



Some other performance related topics…
• Mon 4:50

• The Nuts and Bolts of Kafka Streams: An Architectural Deep Dive

• Tue 2:50 pm
• Intelligent Utilization Aware Autoscaling for Impala Virtual Compute Clusters
• Chasing for internode latency in C* 4.x

• Wed 2:00 pm
• Scaling Solr: From Desktop to Cloud Scale

• Wed 4:00 pm
• A Case Study in API Cost of Running Analytics in the Cloud at Scale with an Open-Source Data Stack

• Wed 4:50 pm
• Unlocking sub second query performance on Lakehouse: Integrating Apache Druid with Apache Iceberg

• Thu 11:45 am
• Optimizing Apache HoraeDB for High-Cardinality Metrics at AntGroup
• Optimizing Analytic Workloads in Apple with Iceberg and Storage Partition Join



Paul Brebner
Instaclustr Technology Evangelist

Community over Code Denver, October 7, 2024

© 2024 NetApp, Inc. All rights reserved.

MAKING APACHE KAFKA®
EVEN FASTER AND MORE 
SCALABLE



11

This talk! Apache Kafka performance

• What is the performance impact of two major architectural changes to Apache Kafka?
• ZooKeeper à KRaft
• Tiered storage

• Revisited max partitions experiments from New Orleans talk with current version of Kafka + KRaft
• What breaks and when?
• Is 1 Million partitions practical or not?

• And inspired by some of our internal Kafka benchmarking and data
• Is workload latency impacted by KRaft?

• Our internal testing suggested workload latency with KRaft was faster than ZooKeeper
• But in theory it should be identical – what’s going on?

• Kafka tiering is here – revenge of the n-tier architecture!?
• How does it work?
• How can you test it?
• What are the performance trade-offs?

• Kafka clusters and Zipf’s law – highlights from Bratislava talk
• Observations

• Tricky to reliably benchmark and understand results of Kafka at scale
Darth Sidious/Emperor Palpatine - Revenge of the Sith

(Source: Wikipedia/Star Wars, CC 2.0)

© 2024 NetApp, Inc. All rights reserved.



Kafka scalability and partitions

PART 1

© 2024 NetApp, Inc. All rights reserved.12

(Source: Shutterstock)



© 2024 NetApp, Inc. All rights reserved.13

Why do we care about Kafka partitions?

• Topics are divided into partitions which enable concurrency/redundancy
• Broker and Consumer side



© 2024 NetApp, Inc. All rights reserved.14

Partitions enable consumers to share work in a consumer group

partitions >= consumers

Partition n

Topic “Parties”

Partition 1
Producer

Partition 2

Consumer Group

Consumer

Consumer

Consumers share 
work within groups

Consumer



© 2024 NetApp, Inc. All rights reserved.15

Partitions – concurrency mechanism – more is better – until it’s not

You need sufficient partitions to benefit from the cluster concurrency
And not too many that the replication overhead impacts overall throughput

0

0.5

1

1.5

2

2.5

1 10 100 1000 10000

Partitions vs. Throughput (M TPS)
ZK TPS (M) KRAFT TPS (M) 2020 TPS (M)

2022 - Better

2020 - Worse

2022 results better due to improvements to Kafka and h/w



© 2024 NetApp, Inc. All rights reserved.16

Why do we care about Kafka partitions?

• Little’s Law
• Concurrency = Throughput x Time, rearranged Throughput = Concurrency/Time
• Default Kafka consumers are single-threaded and require >= 1 partitions

• Max consumers <= partitions

• For higher throughput need to maximize concurrency/consumers and/or reduce time
• Slow-consumer problem à more consumers/partitions

Slow consumers are a problem
(Source: Getty Images)



© 2024 NetApp, Inc. All rights reserved.17

Little’s Law: Partitions = TP x RT  |  RT is Kafka consumer latency

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12

Pa
rt

iti
on

s 
(M

)

Throughput (M messages/s)

Minimum Partitions needed for target throughput and increasing consumer latency
Latency 1ms Latency 10ms Latency 100ms

Increasing TP and Latency à
More Partiti

ons



© 2024 NetApp, Inc. All rights reserved.18

• Producer writes messages to topic partition either
• Manually specified partition or automatically determined partition (based on hash function of Key)

• Order is only guaranteed within partitions

• You may need lots of topics (e.g. for fine-grained message delivery) 
• >= 1 partition per topics, which also means lots of partitions

• So, for some use cases you may need lots of partitions

• Creating lots of partitions is feasible with the replacement of ZooKeeper by KRaft
• KRaft handles meta-data operations including partitions creation
• Now very easy (too easy?!) to create lots of partitions very fast

• Increasing partitions is a de-facto load test for Kafka
• Without any producers/consumers/messages required
• Partition replication consumes Kafka cluster CPU resources

Why do we care about Kafka partitions?



© 2024 NetApp, Inc. All rights reserved.19

Previous results (2022)
ZooKeeper 80,000 partitions
KRaft 1.9M partitions



© 2024 NetApp, Inc. All rights reserved.20

• Original results
• Kafka 3.1.1/3.2.1
• 1.9M partitions
• But tricky to do

• Second attempt
• Kafka 3.6.1 (KRaft GA, batch size bug fixed, KIP-868) with 12 brokers (4 cores each) + 3 controllers = 48+
• Increased mmap and max files to lots (millions)
• Methodology – bash script to incrementally increase partitions on single topic
• Monitor CPU and partitions etc
• Total partitions = partitions x RF (3)
• Achieved 1M partitions BUT

• Our Kafka console metrics failed so can’t see what’s going on
• Kafka CLI topic describe failed (out of memory) so can’t confirm total partitions
• Kept going until 2.25M partitions, CPU 90%, Controllers CPU spiked
• But does it work? No. Send test message, Kafka CLI producer failed (timeout).
• What’s wrong? Kafka cluster brokers and controllers saturated, and controller logs have “error” messages

Maximum partitions experiment - 1

(Source: Adobe Stock)



© 2024 NetApp, Inc. All rights reserved.21

• Tried again this time to determine when producer fails
• Send (and time) message to two topics, baseline topic with 3 partitions only, and “lots” topic                      

with increasing partitions

• CLI producer fails around 48,000 partitions
• Due to a timeout error getting topic meta-data

• But still works with Java producer!
• Unsure what the difference is and didn’t push it any higher
• Also, slower than expected

• Conclusions?
• Ensure that cluster max files and mmap are >> partitions x 2
• With RF=3 CPU increases with increasing partitions (this was expected as replication uses resources)
• Tricky to benchmark large partitions when producer (CLI) and metrics fail as well
• To produce/consume messages to clusters with large numbers of partitions you need a larger cluster again

• E.g. one of our largest Kafka clusters has 500k partitions and 100 brokers (8 cores) = 800 cores (i.e. 16 x bigger!)

Maximum partitions experiment - 2

(Source: Adobe Stock)



© 2024 NetApp, Inc. All rights reserved.22

Summary graph of results



© 2024 NetApp, Inc. All rights reserved.23

Hypotheses from original talk

What ZooKeeper KRaft Results

Workload data operations FAST FAST Identical
Confirmed
Really???

Meta-data changes SLOW FAST Confirmed

Maximum Partitions LESS MORE Confirmed

Robustness YES WATCH OUT OS settings and 
producer!



© 2024 NetApp, Inc. All rights reserved.24

• 2M+ partitions (including RF) is possible
• 46,000 partitions per core

• But to create/use lots of partitions you need
• Bigger clusters

• At least x2 to be useable (guess, 50% CPU headroom for workload)
• i.e. 23,000 partitions per core

• Increased configuration settings
• Keep track of cluster health with metrics (assuming they don’t fail) 

and controller logs
• Java producer was more reliable but may need configuration tuning

Conclusions

(Source: Adobe Stock)



Kafka KRaft workload latency

PART 2

© 2024 NetApp, Inc. All rights reserved.25

Paddle faster!
(Source: Shutterstock)



© 2024 NetApp, Inc. All rights reserved.26

• My original New Orleans 2022 tests indicated there was no difference in throughput for ZK vs. KRaft

• But recent internal tests showed KRaft workload latency maybe slightly faster than ZooKeeper

• In theory there should be no difference – as KRaft/meta-data isn’t involved in the workload write/read paths

• What’s going on?

• Redid our internal tests…

Next, workload latency hypothesis revisited



© 2024 NetApp, Inc. All rights reserved.27

A few “odd” things! 95% CPU so clusters overloaded, latency is high (2.5s+)!

But what about lower loads or 50% latencies?

Internal results show 90th percentile latency is 18% faster with KRaft



© 2024 NetApp, Inc. All rights reserved.28

50 to 99.9 percentiles, constant load 120TPS 20% CPU
ZooKeeper and KRaft end-to-end latencies are identical and fast (50% < 2ms, 99% < 8ms, 99.9% < 25ms)
More in line with what I expect from lightly-loaded clusters
Faster than internal benchmark latencies (designed for measuring maximum capacity)

My results - 1



© 2024 NetApp, Inc. All rights reserved.29

Latency under increasing load (max 50% CPU)
No difference for 50% but some improvement for 99%
This confirms the internal benchmark results

My results - 2



© 2024 NetApp, Inc. All rights reserved.30

But note that higher percentiles like 99th percentile aren’t statistically robust
Graph with lower and upper error bounds - overlap

My results - 2



© 2024 NetApp, Inc. All rights reserved.31

But note that higher percentiles like 99th percentile aren’t statistically robust
Graph with lower and upper error bounds - overlap

My results - 2

A problem with methodology.
The correct question: “is there a difference between two sets of samples?”

This requires more statistical effort to solve. 
E.g. Kolmogorov–Smirnov test (“How likely is it that two sets of samples

are drawn from the same distribution?”)



© 2024 NetApp, Inc. All rights reserved.32

• If there is a difference, why?

• Previously ZooKeeper and KRaft could be run on dedicated nodes
• But not the Kafka controllers which shared the Kafka brokers

• But now the recommended way to run Kafka KRaft in production is with dedicated Controller nodes
• Which allows a slightly higher headroom for Kafka on the brokers
• And may explain the reduced higher percentile latencies under load?

Theory – more resources are available for the data workloads



© 2024 NetApp, Inc. All rights reserved.33

Original Kafka + ZooKeeper

Kafka
Broker

Kafka
Broker

Kafka
Broker

Active
Controller

ZK 1 ZK 2
Leader ZK 3

Controller Controller
Kafka
Cluster

ZooKeeper Ensemble
(either on Kafka brokers or 
dedicated nodes)

Controllers on brokers



© 2024 NetApp, Inc. All rights reserved.34

Kafka KRaft cluster with dedicated Controller nodes

Kafka
Broker

Kafka
Broker

Kafka
Broker

Active
ControllerController Controller

KRaft

Kafka Cluster

Controllers on
dedicated nodes



Is Kafka tiered-storage more like a fountain or a dam?

PART 3

© 2024 NetApp, Inc. All rights reserved.35

Latona Fountain
(Source: Wikimedia)

Hoover Dam
(Source: Paul Brebner)



© 2024 NetApp, Inc. All rights reserved.36

• KIP-405
• 2020 – 2024+
• Early access of tiered storage 3.6.1 (2023) - limitations
• 3.8.0 (2024) Kafka Tiered Storage V1 (15420) – some fixes but still early access

• Motivations
• Quantity of data and cost – can store more data (essentially unbounded) and for longer for less $
• Operational performance

• broker maintenance operations are faster if local data is reduced
• e.g. broker replacement in minutes not hours (130x faster)
• reduces the time that workload latencies can be elevated due to cluster maintenance events

• Scalability/elasticity – can scale compute resources (brokers) and storage independently

• Major architectural change
• From homogeneous cluster architecture with data only stored on local disk (x RF)
• To heterogeneous cluster

• 2-tiers – compute+storage and storage only
• Kafka brokers still have local storage but
• Data optionally also stored on alternative remote object storage – can be read from remote storage if no longer local
• No changes to client code

Kafka tiered storage: Hot & cold data

(Source: Adobe Stock)



© 2024 NetApp, Inc. All rights reserved.37

• Requires a plugin for each remote storage type (RemoteStorageManager)
• Changes so Kafka writes data to remote storage, maintains remote metadata, changes to follower replication, reads from local or remote, 

handles remote deletion, and has new configurations and metrics, etc.
• And handle errors slow/unavailable remote storage (e.g. dedicated thread pools)

High level design (from KIP-405)



© 2024 NetApp, Inc. All rights reserved.38

• Turns out I didn’t know much about Kafka storage
• Behind the partitions are segments

• Is tiered-storage more like a tiered fountain or a dam?
• Many online documents are ambiguous/wrong about how/when data 

is written to remote storage
• i.e. does data eventually cascade from one tier to the next or is it just a 

dam/write-through cache (more or less?)

• Performance testing was tricky
• Why? Because I didn’t understand how tiering worked, the impact of 

various settings, etc.
• But basically – how do you know if the data is being written to remote storage? 

Read locally or from remote storage?

• Is there any impact on write or read performance? Does it matter?

What’s “interesting”?

A 2-tiered fountain (Ganymede’s fountain) 
in Bratislava, Slovakia 

(Source: Paul Brebner)



© 2024 NetApp, Inc. All rights reserved.39

• Append-only file system logs
• Fast and supports replaying

• Records are written to disk segments
• Only one active/current segment (per topic/partition)
• When full (time or space) it is closed/rolled
• New segment started
• Segments eventually deleted

What’s behind the partitions?

(Source: Adobe Stock)



© 2024 NetApp, Inc. All rights reserved.40

• Do records last forever?
• No – deleted after retention period (7 days default)
• Or space

• Until deletion, records are available for reading by consumers
• Once deleted there’s an exception and consumers can’t read them

Delete delete delete delete!

Dr Who Cybermen
(Source: Wikimedia)



© 2024 NetApp, Inc. All rights reserved.41

• Once enabled for a cluster tiered-storage can be enabled per topic
• For Instaclustr Kafka, must provide an AWS S3 bucket which is used as the remote storage

• New configurations for local storage
• Local.retention.bytes and local.retention.ms
• Original configurations are now for remote
• Want local time/space << remote

Tiered-storage



© 2024 NetApp, Inc. All rights reserved.42

• It took ages for the 1st remote file to appear in S3 – why?

• I incorrectly assumed (lots of docs imply this) that
• Remote segments are only written once the local retention is reached (i.e. tiered fountain model)
• This is incorrect
• Local segments are eligible for copying to remote storage once they are closed but

• It can take some time for them to be copied as asynchronous, and
• Kafka remote storage component both uses and has limited (tunable) resources, and
• Defaults for segment closing are 1GB (segment.bytes) and 7 days (log.roll.hours) so can take some time (particularly with low TP and many partitions)

• And remote segment deletion is potentially slow
• Lots of settings and uses Kafka resources
• once eligible for deletion they are

• eventually removed

When are remote segments written?

A 2-tiered fountain (Ganymede’s fountain) 
in Bratislava, Slovakia

(Source: Paul Brebner)



© 2024 NetApp, Inc. All rights reserved.43

• Kafka homogeneous architecture with fast (e.g. SSDs) local storage is known for
• low latency and high throughput performance

• Does tiered storage have any performance impacts?

• And how to test?
• Tricky to ensure that the consumer is really reading from remote storage
• Method – create local only and remote mostly topics (this is a bit artificial c.f. production)

• For remote
• Create topic with tiering enabled, 6 partitions, and very short local.retention.ms time limit

• Also tried smaller segment size
• Write lots of data until at least 10GB of segments in S3
• Wait for 30m
• Run the consumer from offset 0 and record the performance

• Our internal tests used a EBS-backed Kafka cluster, mine used SSD local storage (faster)

Performance impact?



© 2024 NetApp, Inc. All rights reserved.44

• Local is 2.5 times higher TP than remote

• Small segments perform worse

• No difference between
• 1st and 2nd reads
• Broker caching not used?
• Maybe room for improvement

Throughput 



© 2024 NetApp, Inc. All rights reserved.45

• Same story

Latency



© 2024 NetApp, Inc. All rights reserved.46

• No measurable impact on latency or throughput as copying to remote storage is asynchronous

• BUT copying uses more broker resources, 10%+
• reads and deletes also use Kafka resources
• may need a bigger cluster

• Some optimizations possible, for example
• Ratio of local vs. remote data
• Kafka remote storage configurations/resources are tunable – I just used defaults
• Segment size (but not too small)
• Prefetching and cache settings? Only noticed these after experiments!
• Speed/throughput of cloud storage
• Due to reduced TP & increased latency from remote storage may need to increase the number of consumers and partitions

Producer/write impact?



© 2024 NetApp, Inc. All rights reserved.47

• Data copied as soon as possible from 
primary (upper reservoir) to secondary 
storage (lower reservoir)

• Data is available locally until it is deleted 
(dam spillway)

• If data isn’t available locally anymore then 
read back from secondary storage (pump)

• Kafka tiered storage is basically a write-
through cache

Better model? Pumped hydro dam!

(Source: Adobe stock)



© 2024 NetApp, Inc. All rights reserved.48

• Due to copying strategy (asap) most of the records have
• >> RF replication
• i.e. local (RF) + remote storage (multiple copies)

• Does Kafka need local storage still? 
• Yes – that’s how it works
• But potentially you can reduce the size of local storage substantially
• Depending on workload

• If most consumers are keeping up with and reading from the last few segments locally 
then you don’t need much local storage

• But if some consumers can get behind you may need more local storage to ensure 
responsive processing in semi-real time

• Many replaying use cases are not so time critical and should work reading from remote 
storage only

• Doesn’t Kafka now just have the same architecture as Pulsar?
• Independent compute and storage nodes!
• Revenge of n-tiered architectures!

Observations

Darth Sidious/Emperor Palpatine - Revenge of the Sith
(Source: Wikipedia/Star Wars, CC 2.0)



Kafka Clusters and Zipf’s Law: 
size distribution

PART 4

© 2024 NetApp, Inc. All rights reserved.49

(Source: Shutterstock)

Visual size comparison of the six largest Local Group 
galaxies, with details (Source: Wikipedia)

Extract of talk from C/C Bratislava 2024
"Why Apache Kafka Clusters Are Like Galaxies 
(And Other Cosmic Kafka Quandaries Explored)”



© 2024 NetApp, Inc. All rights reserved.50

• Distribution function
• Most frequent observation is twice as common

• as next and so on (i.e. 1/rank)
• Long-tailed distribution
• 80/20 rule (20% of people own 80% of $)
• C.f. Pareto (discrete vs. continuous)

• Log-log rank vs frequency/size gives approx. straight line
• Common examples

• Frequency of words
• Wealth distribution
• Animal species size
• Earthquakes
• City sizes
• Computer systems (e.g. workload modelling, subsystem capacity)
• Galaxy sizes

Scaling/power law
Zipf’s Law



© 2024 NetApp, Inc. All rights reserved.51

• Question: How large are the largest structures in the universe?

• Answer: Bigger!

• Zipf’s law predicted that
• bigger galaxies would be detected in older parts of the universe
• beyond the reach of the Hubble at the time
• confirmed with the James Webb telescope observations

• But what’s this got to do with Kafka?

Size and scale predictions
Apache Kafka + Galaxies?

Image from NASA’s James Webb Space Telescope
showing older and bigger galaxy clusters



© 2024 NetApp, Inc. All rights reserved.52

All our managed Kafka clusters, size = number of brokers per cluster

What is the distribution? Definitely a long-tailed power law

Kafka Clusters and Zipf’s Law

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800 900

Si
ze

Cluster

Cluster Size Distribution (largest to smallest)



© 2024 NetApp, Inc. All rights reserved.53

Approximately Zipfian
Kafka Clusters – log size vs. log rank

1

10

100

1000

1 10 100

Lo
g 

ra
nk

Log size

Kafka Clusters - Log size vs log rank



© 2024 NetApp, Inc. All rights reserved.54

Can expect larger clusters (animals, galaxies etc.)
So What? Kafka and Zipf’s Law (1)

Maraapunisaurus, extinct dinosaur, 150 t

African Elephant, 7 t



© 2024 NetApp, Inc. All rights reserved.55

Extrapolation of size from Zipf’s law + largest observed cluster
Predicted larger clusters

0.1

1

10

100

1000

1 10 100 1000

Lo
g 

ra
nk

Log size

Kafka Clusters - Log size vs log rank

Rank Predicted larger clusters

Predicted larger clusters

Larger



© 2024 NetApp, Inc. All rights reserved.56

Estimate total nodes for more clusters

Animal transportation problem

So What? Kafka and Zipf’s Law (2)

How many animals can fit in a boat? 
(Source: Public Domain)



© 2024 NetApp, Inc. All rights reserved.57

Total weight of animals on Ark (assuming elephant is the largest) tends to 90 tonnes
If you know the size of the biggest thing you can predict the total size



© 2024 NetApp, Inc. All rights reserved.58

Only increases total nodes by 25%
Doubling number of Kafka clusters

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 200 400 600 800 1000 1200 1400 1600 1800

Cumulative total nodes
100% more clusters

25
%

 
m

or
e 

no
de

s



© 2024 NetApp, Inc. All rights reserved.59

Knowing metrics for our biggest cluster we can estimate total values for ALL CLUSTERS

27K topics (probably underestimate), 5.8 M partitions; 321-564 million messages/s

Assuming Zipf distribution…

27.45051596

5.886516239

321.3248554

564.9712845

1

10

100

1000

1

Grand Totals for All Kafka Clusters

Topics (k) Partitions (M) Msgs in+out (avg, M/s) Msgs in+out (max, M/s)



© 2024 NetApp, Inc. All rights reserved.60

• Lots of small clusters

• Few big clusters

• Can make predictions from top cluster/s
• Bigger clusters possible
• Totals – e.g. topics, partitions, brokers, throughput

• A wide distribution of sizes is observed
• Kafka is horizontally scalable
• Fits many different customer workloads
• Some clusters split/multiply over time
• Some clusters grow in size over time

Kafka cluster size distribution is Zipfian
Conclusions

(Source: DALL·E 3)



© 2024 NetApp, Inc. All rights reserved.61

1. KRaft supports lots of partitions and
2. (maybe) slightly faster data workload latencies
3. Tiered-storage uses extra broker resources and is slightly slower for reads (from remote storage)
4. Kafka clusters size distribution follow Zipf’s Law

Summary: Four unsurprising Kafka performance results

Unsurprised piglets
(Source: Adobe Stock)



© 2024 NetApp, Inc. All rights reserved.62

• Hard to benchmark Kafka still
• Better, more sophisticated (e.g. end-to-end latency, high loads, metrics capture and analysis), easier to use tools 

(e.g. “Kafka benchmarking as a service”)
• Tried OpenMessaging but couldn’t get it to work

• More science is better – e.g. results comparison

But some interesting performance engineering things

Curious pig
(Source: Adobe Stock)



© 2024 NetApp, Inc. All rights reserved.63

• Performance benchmarking of cached (e.g. tiered storage) systems is (still) tricky
• One of my earlier papers/talks was on Enterprise Java caching

• Entity Bean A, B, C’s: Enterprise Java Beans Commit Options and Caching, Middleware 2001
• Results were variable depending on cache settings, workloads and cache hit ratio etc
• Caching benefit not linear/predictable
• Hard to get repeatable/understandable results

• Not much has changed
• For tiered storage, the baseline is local (cache) however
• So remote storage performance is harder to understand
• And there may still be surprises – in general we recommend benchmarking your workloads

• Zip’s law is widely applicable
• And fits our Kafka cluster distribution
• With some useful predictions

But some interesting performance engineering things



© 2024 NetApp, Inc. All rights reserved.64

• Try us out!
• Apache Kafka and more
• Free 30-day trial
• Developer size clusters
• www.instaclustr.com

• All my blogs (100+):
• https://instaclustr.com/paul-brebner

Instaclustr Managed Platform

http://www.instaclustr.com/
https://instaclustr.com/paul-brebner


Paul Brebner
Open Source Technology Evangelist

© 2024 NetApp, Inc. All rights reserved.65



THANK YOU

© 2024 NetApp, Inc. All rights reserved.


