
Overview of tools, techniques and tips - Scaling
Ozone performance to max out CPU, Network and

Disk
Duong (duong@apache.org)
Ritesh (ritesh@apache.org)

Tanvi (tanvi.penumudy@cloudera.com)

2

Agenda
Surface area of projects

• What is Ozone?
• Cover the wide surface areas of projects to improve performance and scale
• Discuss lessons learned
• Tips and tricks

3

INTRODUCTION
What is Ozone?

• Apache Ozone is a top level Apache project: github.com/apache/ozone
• Object store created within the big data ecosystem
• Implements Hadoop Filesystem Interface and S3 API
• Designed to

– Scale
– Be strongly consistent
– Optimize big data workloads
– Efficiently cater to object store workloads
– Provide atomic filesystem operations and object semantics

4

Datanode

OVERVIEW OF OZONE

User ChunksChunksBlock

Container

ChunksChunksContainer

Ozone Manager Storage
Container
Manager

Billions

Hadoop FS Object

S3

3x (Ratis/Raft) 3x (Ratis/Raft)
Thousands/Exabytes

VolumesVolumesVolumesVolume

VolumesVolumesVolumesVolume

VolumesVolumesVolumesVolume

Major services and their scale

5

Ozone Namespace
Volume

Engineering
Volume

Staging
Volume

ProductionData

Bucket

Backups
Bucket

Logs
Bucket

AppData

FSO OBS

/volume/bucket/key

• Volume
– Top level namespace grouping
– Can only contain buckets
– Tenancy

• Bucket
– Contains key
– Types

• OBS: S3 compatible keyspace
• FSO: Filesystem with atomic renames

• Key
– A dir/file stored in the system

6

Frugality over flexibility
List keys performance with protocol improvements: HDDS-9079

● Redundant information included per entry in listing keys to client.
○ Heavy penalty when serializing and deserializing
○ Total number of keys that can be listed in aggregate is directly

proportional to the size of each object due to the cost of (deserailization
and serialization)*2 + network transfer.

● Most common client side invocations needs only part of the payload
○ Optimize for common case
○ If client needs detailed object layout pay the price for multiple round

trips.
● Performance difference for multiple clients issuing list keys in parallel.

○ 20% faster for 1kb objects (845 obj/sec)
○ 20k % faster for 10 GB objects (1,799,500 obj/sec)

https://issues.apache.org/jira/browse/HDDS-9079

7

Proto for ListKeys before
TMI

8

9

Proto for LightWeight ListKeys later
Serialization and deserialization load matters

10

Ozone Manager

Ozone Client

Datanode

Storage Container
Manager

Recon

Foreground

Background

No background load

Datanode
Datanode

Datanode

Containers
hadoop-ozone

Scale Out No foreground load

ARCHITECTURAL CONCURRENCY: SEPARATION OF CONCERNS

Ozone ManagerOzone Manager

Ozone ClientOzone Client

Namespace
hadoop-hdds

Storage Container
Manager

Storage Container
Manager

11

Separation of concerns vs. latency concerns
When foreground cares about background

• SCM knows the current status of containers and how they are mapped to
Datanodes (50% impact of checking with SCM per read)

• SCM knows how to sort Datanodes based on data center topology. (Drop of
75% sorting with SCM per read)

• Solution:
– Delegate to OM the capability to address IO path needs with exception

handling that defers back to SCM.
– Move ability of populating container to Datanode mapping for keys into

OM HDDS-7223
– Move ability of OM to sort Datanodes (move topology code support to

OM). HDDS-9272
• Outcome:

– OM can sustain 175-200K reads per second

https://issues.apache.org/jira/browse/HDDS-7223
https://issues.apache.org/jira/browse/HDDS-9272

12

Zero Copy
Why zero copy matters for storage

• CPU burn for moving data around adds up in storage systems.
• Garbage Collection load adds up in Java
• Java NIO added zero copy abilities explicitly to make Java better for data

processing systems.
• Ozone uses GRPC for reading data from Datanodes. GRPC in Java for

longest time did not support zero copy buffers.

13

ZERO COPY
GRPC + Zero copy not a ideal match in Java

14

ZERO COPY
GRPC+zerocopy https://github.com/GoogleCloudPlatform/grpc-gcp-java/pull/77 => ~20% improvement + Better
GC

https://github.com/GoogleCloudPlatform/grpc-gcp-java/pull/77

15

Famegraphs vs metrics
When flamegraphs leave you in the dark

• S3 API performance down 5x for large files
• Flamegraph for S3 Gateway looks normal
• Flamegraph for Datanode looks normal
• Metrics to the rescue

– Latency per call looks normal!
– Control the variables, use fixed object size

for predictable runtime (single round trip
to Datanode expected per object read).

– Metrics show rate of reads from Datanode
4x the expected rate based on object read
rate.

• Change in how checksum boundaries lead to
increased reads to Datanodes.

16

Tips for designing good dashboards
When flame graphs leave you in the dark

• Even Gemini and ChatGPT will give good and comprehensive advice.. With the
risk of duplication here goes..

– A dashboard should answer a question..
• What is happening with read objects in the entire cluster?
• The application sees X ms per object read, what is the breakdown of

time spent?
• Do the numbers add up?

– One small read from application equates to how many RPC calls.
– Redundancy in dashboards is given.

• Per component dashboards vs cross cutting dashboards will have
redundancy.

• Learn to use Grafana to generate good dashboards quickly.
– LLMs are great at generating promQL or advice on how to use Grafana

17

Order of tooling
When the phone rings..

• Which operation is slow?
• Use or generate a dashboard for the relevant metrics (know your metrics!)
• Overlay the hardware usage metrics on top of the RPC metrics

– Even utilization across drives, nodes, racks..
• If possible use load generation tools to pinpoint if this a hardware issue,

scale issue or something new
– RPC echo tools are amazing

• Noop request and response that can progressively probe
performance for each layer in the service. Ex: Round trip for rpc,
followed by round trip including a consensus round for a
replicated service, followed by request and response with varying
payloads.

• Logs are useful but slow to debug.
• If nothing else works, bring out the flamegraph generators.

18

Organic premature optimization
Challenges of scaling open source projects

• Ozone to scale to cluster sizes that are hard to get hands on while developing
• Good engineering => think of ways to speed code up!

– Reality: Assumptions that did not span out
– Outcome: Code complexity and unexpected challenges to scale and

performance.
• Incremental but significant changes on a continuous basis to max out

performance based on new data that we encounter.

19

Q&A

Thanks for Attending!

