COMMUNITY

THE ASF CONFERENCE

CODE

Vertically Autoscaling with
Cassandra

Karla Saur - Principal Research SDE
Microsoft - Gray Systems Lab (GSL)

With thanks to:
Anna Pavlenko (VASIM creator), GSL Team, German Eichberger

About me

&> lam a Principal Research SDE in Gray Systems Lab (GSL) at Microsoft, an applied
= research lab within Azure Data.

— Before Microsoft, | completed my PhD ~10 years ago, and worked as researcher
== on Telco/5G autoscaling

= My main research focus is optimizing cloud infrastructure for database and

=

machine learning workloads from a general perspective.

| hope that some of the techniques | mention are useful to you, and | am excited
%2 to learn more about Cassandra while at this conference!

https://www.microsoft.com/en-us/research/group/gray-systems-lab/

About me

| am a Principal Research SDE in at Microsoft, an applied
research lab within Azure Data.

Before Microsoft, | completed my PhD ~10 years ago, and worked as researcher
on Telco/5G autoscaling

My main research focus is optimizing cloud infrastructure for database and
machine learning workloads from a general perspective.

| hope that some of the techniques | mention are useful to you, and | am excited
to learn more about Cassandra while at this conference!

https://www.microsoft.com/en-us/research/group/gray-systems-lab/

Initial Project: Monolithic DB’s on K8s

* Originally, our team was tasked with
optimizing deployments of monolithic
databases (ex: 1 primary, 2 secondaries, fixed)
running on Kubernetes.

* We found that many users were
overprovisioned in terms of CPU allocation,
which is how we bill (#CPUs/hour)

* This began our vertical scaling journey.

CPU Usage

14 1

12 A

10 1

Red (upperline) - CPU limit setting
Blue (lower line) - actual CPU usage

!
0Z:00

))) I)
0400 0600 03-00 10-00 1200
Time

- 14

- 12

- 10

Vertically autoscaling with Cassandra

e Cassandra is famous for its linear scaling, seamlessly adds more nodes.

* However, bringing up a new node (horizontal scaling) involves data movement
and can take a significant amount of time

 Vertical scaling does not involve data movement.
* |t can provide an additional mechanism to right-size resources.

* There are many ways to run Cassandra (on VMs, on containers, on
Kubernetes, K8ssandra, etc), and techniques are generally applicable.

* We can often scale the cores in-place without restart

Scenario: Vertically Scaling Generic DBs

* Example: a database runs as a set of Kubernetes Pods with n cores each.
» Users are billed based on a max CPU limit they specify

pod pod pod

e Kubernetes excels at HORIZONTAL pod autoscaling, but our database use
case is a fixed number of replicas. But we can scale VERTICALLY!

Generic Vertical Autoscaling (end-to-end)

Application Application Application

Could be Kubernetes,
some other container
orchestrator, etc. .

scales

Could be Kubernetes, or
other program capable of _ _

~~

making changes to the triggers action Scaler
application as-needed. controller Healthy?
Resources?
Could be rest API, Do decision.
, recommendation
metrics :)
service, etc.
server Mo
Could be any (csv, open Y
telemetry, other standards).
S~ 3 select Pluggable writes o decisions
metrics recomrT\ender
algorithms

data

Outline

* Mechanism
* Vertically scaling in-place
e Cassandra perf impacts?

* Policy

* CaaSPER: Proactive/Reactive algorithm for balancing price-perf trade-off
* Code/demo: VASIM - Vertical Autoscaling SIMulator

* Try your own autoscaling algorithm!

* Autotuning: parameter tune your own algorithm
* How to get started with Cassandra

Mechanism: scaling in-place

Application Application Application

scales

controller

Restarts hinder scaling nimbly in stateful workloads

(even with containers!)
- s

Rolling restart HA process (~¥10-15 Step 1
min) makes scaling perf much worse

than necessary due to delay. Step 2 i - -

Step3

! ! Rolling upgrade process

6 1 -6

5 1 -5
2 4 45 With no restarts, we could minimize
>3- 3 throttling and optimize scaling further and
7l 5" more safely by reacting faster

1 1

- H

No restart!
5/12

In-place/no-restart scaling of CPUs

* Docker: docker update some-cassandra —--cpus Or ——-cpu-quota

e K8s: In-place updates officially an alpha feature in the 1.27 release (~April 2023)
under the feature gate InPlacePodVerticalScaling

* Changed simply by patching the running pod spec
e Default behavior is “in-place” unless resizePolicy is set to RestartContainer

resizePolicy:
= resourceName: memory

restartPolicy: RestartContainer
resourceName: cpu
restartPolicy: NotRequired

https://kubernetes.io/blog/2023/05/12/in-place-pod-resize-alpha/

What is the perf impact if the DB thinks it has
n cores, but we actually give it m cores?

* 3 replica SQL (on Linux) deployed on 32 core K8s nodes

e Start scaling op every 200 seconds

* Because the machine has 32 cores, SQL Server thinks it has 32 cores
* Scalefrom2 2426282102 12> 16> 24
* Plot the average throughput during each segment

e 2 tests

 Scaling only (i.e. SQL activates 32 SqlOS schedulers)
e Coordination via affinity changes prior to scale

8000 -

7000 A

4000

Throughput (requests/second)

. 1000 A
Pod core limit

(full node
schedulers)

6000

5000 -+

3000 +

2000 A

Scaling only. Overall avg txn/s: 3960

32 schedulers fighting for n < 32 cores
worth of time, results in lock waits, _
priority inversions, etc. TR Y .J

s dfnigholgenaidi vy ‘ i i Only 24 cores were
o : : ! available for user workload
' 2/32 4/32 6/32 8/32 10/32 | 12/32 16/32 24/32

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000 620(
Time Group (10 secs)

Coordination via affinity tweaks. Overall avg txn/s: 4102

8000
w001 Affinity tweaks especially useful when # L |
Zeo00{ cores significantly lower than advertised . |
8 L L
2 0] (ex: 2-6 cores out of 32) sl
E‘: 4000 - - ! . —_ .‘:.-L.,. ._';’I'.'_‘_. —— !
‘i 3000) T
3 - " i
Perf charige2000 EETWCTTATER J: i i
when I ' [
schedulers 1000 - : >
mateh cores T+31% | +30% | +30% +1% +6% 3% | 0% 0%

0 200 400 600 BDD 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000 62

Time Group (10 secs)

2/32 4/32 6/32 8/32 10/32 12/32 16/32 24/32

IMPORTANT: Many
SQL instances are
often idle and could
be scaled down to 2-
4 cores. The longer

we can keep them
there, the longer we
have cores to use in
other places. But we
don’t want to lose
perf!

Perf impact of restart-free core scaling with
Cassandra?

Average CPU Usage * For this customer provisioned
30 - — nodel
— node2 at 32 cores, we could scale
7] s down by ~20 cores each night
g 20 - —— node5 ..
S — node6 * But what is impact to the
815 ! locks/buffers/threads/etc if the
= DB thinks it has 32 cores but only
= has 127
5-
0 container
9'596, 9'596 9'5'6\ 9'59% 9'5& 9'5'\'0 9'5'0 9'5'0 nproc=32
,\9"? ,9"? ,@"? ,9"5' @"? ,9’\5' ,9"5' ,9"5“ cpu-shares=12

Testing perf impact of restart-free core scaling

Quick experiment with Cassandra:
e Ran tried matched/mismatched on a customer’s workload: pleasantly boring.

_container 3

nproc=4
shares=4

4 core VM (E16-4ds_v5)

C Container 3

nproc=16
shares=4

16 core VM (e1sds_vs)

calls/second diff:
in the noise/nearly identical

_container

nproc=8
shares=8

8 core VM (k16845 v5)

C_container 3

shares=8

16 core VM (16ds_vs)

calls/second diff:
in the noise/nearly identical

_container >

nproc=8
shares=8

8 cores available

_container 3

nproc=96
shares=8

calls/second diff:
in the noise/nearly identical

* Java’s public int availableProcessors () - apps must poll this explicitly

e Cassandra doesn’t, so we expected to see some mismatch due to threadpools, etc.

 However: to use the new cores, Cassandra needs to be aware of the max cores at startup.

e Some JVM-weirdness related to List of Processors...to be continued!

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Runtime.html#availableProcessors()

What about memory??

e Resizing memory without a restart is
challenging, regardless of platform or
environment (Python/C/JVM/etc).

* Memory resizing likely requires
application changes.

* For now, restart/rolling-update when
memory needs to be resized.

Outline

* Policy

* CaaSPER: Proactive/Reactive algorithm for balancing price-perf trade-off

Vertical autoscaling: CaaSPER Algorithm

Vertically Autoscaling Monolithic Applications with CaaSPER:

5calable Container-as-a-Service Performance Enhanced Resizing Algorithm for the Cloud

Anna Pavlenko, Joyce Cahoon, Yiwen Zhu, Brian Kroth, Michael Nelson,
Andrew Carter, David Liao, Travis Wright, Jests Camacho-Rodriguez, Karla Saur
thrstname} {lastname}i@micrasedt.com
Micrasaft

ABSTRACT

Bubernetes has emesged &3 a prosinent epesrsource platfors for
managing cloud applications, including statehd databases. These
manedithic spplicatiens cely an wertical scaling, admsting T roges
based on lead fluchmtions. However, our analyzis of Kubernetes-
bicsed Ditabase-as-a-Service (DBaas) offerings at Microsoft revealed
that many customers comststently over-proviston resources for peak
waorklosds, negle cting cost-saving opporiundties through resource
wcale-down. Wi found that there is a gap in the abifity of existing
wertical autoscaling tesds to minkmize resource slack and resposd
proanptly to throttling, leading to increased costs and fmpacting
cracial metrics such as throughpust and svailability.

To address this challenge. we propose CaaSFER a vertical au-
toscading algorithm that hlerds reactive and proschive strategies. By
dynamically sdpastieg CPU resounces, CanSPER manimizes resource
dack, maimtains optimal CFU wtilization, and reduces throtting
Emportantly, customers bave the flesibdlity to prioritize either cost
savings or high performance based on thelr prefesences. Extensive
testing demonstrates that CaaSFER effectively reduces throttling
and keeps CFLU uhilization within target levels. CaaSFER is designed
to be application-agrestic and platforme sgeostic, with petential for
extension fo sther applications requiring vertical autoscalieg.

1 INTRODUCTION

Choud computing [&, 27, 53] bas transformed the lasdscape of ap
plication development, deployment, and management by providing
orpanirations with access b on-demand resources and scalabaliby,
However, during provisioning. wsers are often required to specify
the amouet of resources they will mitially require among a large
mumber of cloud offerings fe.g. VM configaration and szeh, It is
challenging fo estimate mesource requiremsents upfront, and the
imitiall settings cam become Irrelevant with the dynamie nabure of
the wosklogds. One of the mest common sealing approackes to
address same of thess issues has been Aorizonial suloscaling, in
which sdditiomal mervice replicas are added and removed based on
whilizatbon, thus adjustieg overall system resource usage in foed
sized guamtities. Although this has warked for some services [59],
this approach is mot well suited for stateful monolithic systems

Permbisien i mike digatal of & aptes ol all or part ol thes weell for prososal oe
charroom e @ praved wihoui (s povaded (ki cepion sne eol muscs ar diririssisd
fer prefit ar cempanct sl achvarrege ansd (ka1 caphes bass this setics and tha full ataton
on i fink page. Copysighisdar compensnia of s werk awnnd by sibem ikas A0
i e vl Absiracting wiik credis it permiiied To copy eiberwiss, o mepublis,
e pasi a3 werees o bo redisiribeie ie liss, requires prier pecic prmisan and ior s
e Hogret permimions frem parmimen g ooy

SCAICNTN, o X0, Favsiiag, LAy

B Aumscabian far Camgiisg Machinery.

AW EEN 670z amrrrren YT MM SES 00

hetpacvdalang 101 143 o En ERANEL

{e g, raditicnal RDEMS) that either have a fxed mamber of total
instances (g, sngle writable primary) or cannot guickly scale
hosizantally due to =ee of data copy operations inherent fo creat-
Ing eeew replicas In such cases, vernial scaiing capabdlities become
cracial, allowing expanding or contrazting ressurces of existing
replicas. Additional benefits to vertical scaling mclude simphicity.
performance, and reliskality [41]

Modern platforms such as Kubernetes (K&s) [45], which has
becoms: a popular platfors chobee for plementing Database-as
a-Service {DBaad) and other stabeful service offerings [0, ¥, 54,
4], Facilitate vertical resource scaling. K&z provides two essen-
tal mechankims, requests and lisdts, to defloe pusrandeed and
berstable CPU resource alloeation for applications. At Microsodt
and elzewhere, applications needing predictable perfommance, such
as databases [24, 37], often st réquests and Linits fo the same
value [13, 40, 43] bo ensure that the application will be scheduled
on a eide with enough resources to abways provide the Limits."
[Ciespite resizing suppaort, we fnd that users in our database of-
fermgs st Microsoft rarely scale their deployments and unally
over-provistan for the worst-case. Is fact, dusing o sanspding of first
party DBaal deployments, we found mses of CPU ovwer-provisoning
that exceeded peak load by a significant fsctar, up to 20 in cer-
tain workloasds, resalting i snder-ublized resources (e, moreased
ooty for sdle pesources), as well as instanees of under-proviiniag,
which leads to performance Impacts due to “throttling” {ie., whes
an application lacks encagh rescarces (o meet i3 load demands).

To wstomite this process, the Vertical Pod Autescaler (VPA) [33)
in K8 can dynamically adjust the requests and Lind ts valoes ac
ording to & pluggable algorithm, Howeves, when tested, the default
WEA algerittom and other exizting approsches proved imsdequate
I ouer seenario for effectively sddressing cases invalving throtiling
detection and scaling down when over-provisioned. Additionally,
these methods were obliviews of the billing medel in use. keading
b mabopiimal cost-performance tradecdfy during scaling decisons,
an |enportant conslderation for customers. Other recent warks is
EEs [73] beverage mackine leansng to suppoat predictive autaseale.
Elowever, there is a significant drawback in purely relving on a
machine learming algorithm in predictve sutcecaling especally
using timse-series forecasting, s it lecks the ability to effactively
desect throttling and instead assumses that fubare usage will resmals
cemsistent unkil retrained. Marecver, for throtiled workloads, the
usapge forecast does not align with the toee amount of resources
regaired for the weakboad, leading to under-estimated 1inits (sce
§3.5). When alsaing for optimal performance, there ks a strosg peed
te quickly identify and respond fo throtiling to meet SLA objectives,

Tndate thuil serviee bevel agreessernts (S AS) oo ded by DB Mt er sinphiniie the
brpantares of predictsbal ity and may v paradtion for vielvsoae |57,

< —

Vertically Autoscaling Monolithic
Applications with CaaSPER
(Pavlenko et al. SIGMOD 2024)

reads Pluggable

recommender
algorithms

Why not K8s built-in Vertical Pod Autoscaler (VPA)?

* For billing, we scale only at whole-cores, with 1imits=requests

* In Kubernetes, requests and 1imits define guaranteed and burstable CPU
resource allocation for applications. Setting these equal ‘breaks’” VPA.

* Must consider customer preferences when scaling

* Most existing VPA tools are for optimal scheduling, not cost-perf preferences

CPU Usage

Red - CPU limit setting
Blue - actual CPU usage

14 -
12 -
10 -

L= S = = I = :

Kubernetes VPA
Default Algo

Scales initially, then never again |

T T T T

Ch 12h 24k 36h 48R &OR

T
[=
Pl EEN

Core Count

CFU Usage

14 1
12 1
10 4

[T S = N = R =

CaaSPER

Right-sizes quickly and adapts

T T T T T

Oh 12h 24h 36h 48h 6OR

[
=

[
b

Core Count

Vertical auto-scaling approach:
2-part approach

Proactive:
Handle the initial Pod size Combine CaaSPER with existing
algorithms to handle cyclical/

Reactive:

fit and adjust to spikes
predictable loads over time

\ _Z

reads Pluggable
<—— recommender

algorithms

Vertical auto-scaling: Part 1

Reactive/initial right-sizing with no data

Reactive:
Handle the initial Pod size
fit and adjust to spikes

_Z

N

U 10
m

5
=5 57

l} 4

reads Pluggable
<—— recommender

algorithms

Reactive CaaSPER

Doppler (prior work) provides initial SKU (#cores/#mem) selection
offline for SQL Server based on personalized price-perf curve

* We adapted this price-perf curve for our container scenario by monitoring the
change in slope over time, instead of focusing on a static price-perf curve for

mlgratlon
10 10
_ 08 _ 08
g g
B 06 £ 06 -
5 041 S 04 -
£ :
- 0.2 1 —~ 0.2 -
0.0 T T T T T 0.0
o 2 4 & s S
Price {Thousands) Price {Thousands)
if > threshold, scale up if < threshold scale down

Doppler: Automated SKU Recommendation in Migrating SQL Workloads to the Cloud. PVLDB 15, 12 (2022).

Reactive CaaSPER

Steepness of price-perf curve determines how MUCH to scale

Scaling Factor(s) = log(bs + ¢)

e s: Slope of the PP curve at the existing number of cores
e b: Skew estimate of the distribution of existing slopes

e ¢: Minimum number of cores needed to operate

e

]

0 2 4 & 8 10
Possible slope values

of cores to scale by

Figure 6: Example shape of scaling-factor function SF(s) of
PvP-curve slope s. Scale-ups happen more aggressively for
large s (more throttling), than small s (less throttling).

Vertical auto-scaling approach:
Pluggable proactive portion

Proactive:
Combine CaaSPER with existing

algorithms to handle cyclical/
predictable loads over time

\ =
gm- : : : .

reads Pluggable
<—— recommender

algorithms

Proactive:

Real cyclical workload + Time series

 Started by looking at simulated + real workload CPU traces

Raw Data

* Experimented with many different algorithms and data preprocessing for
prediction and measured throttling/fit/etc

* Naive worked well for most of our scenarios, but can easily swap out
* Trade-off: complexity/robustness+debuggability

Combining Reactive + Proactive, e predictive

based on 2 days

based on 1 day
Predictive
scale-up but

with load
144 - 14 141 14
2 change,
14 "l"“ |"|||| H12 12 1 /7 reactive
o - 0] / o CaaSPER takes
L 5 3 % back over
T g Lg g 8- Lg ©
= @ > I
& 6 6 ﬁ & 6 6 ﬁ
4] Ll . 4] LL Lol .
2 - L L [2 - e —1 |2
0 Day1 Day 2 Day 3 o 0 Iay1 . Il)ay2 . Il)ay3 . 1o
00:04 12:04 00:04 12:04 00:04 12:04 00:04 00:04 12:04 00:04 12:04 00:04 12:04 00:04
Time Time
Reactive only Reactive + Proactive

Red - CPU limit setting
Blue - actual CPU usage

CPU Usage

(] [£ wn o -4

CaaSPER parameters

Users can specify preferences on a slider, or we can autotune in our simulator (next):

More performant/More expensive Sllder Of tradeOffS Less performant/More cost-effective

Impact of our parameters:

v

«__Slack (buffer between resources used and resources allocated) * | ' max scale
slack . * Max amount to auto-scale up/down =L, |Maxscate 21 down= 2

parameter is . H £ ty t | n{ [down=10 o
configurable. ow requen_ y O Scale
Here: 15% How much historical usage data to look at .
* Balance between reactive vs proactive algorithm . " ﬂ

N . I— 4

 How early to be proactive (scale up 5 min early or 1 hour, etc) , WA

 How frequently to scale N
15:02 20:C

]

CPU Usage
CPU Usage

T
06:02

w2 w0 12w * Guardrails (ex: giant burst of traffic, how to behave) ®00 0600

Time

Algorithm 1 CaaSPER autoscaling decision algorithm.

. . . . Require: x.: CoreCount,,
A h . k Require: {X;}: Vector of workload CPU usage indexed by time {observed
t tnis point: panicking. pire:) Ve
Require: R: System inputs (eg., resource limit such as max CPU, price per

core, granularity per core)
Require: sy: High slope threshold

. . Require: s;: Low slope threshold
¢ We had d pa per d ed d | Ine. We bu I It Rtguir:: r::h: High iﬂ:tc threshold as percentage of capacity

an awesome algorithm, but tuning ﬂ:z::: qLoy ﬂﬂﬁ:ﬂﬁiﬁfﬁl thcapucly
th e 20+ pa Ffam ete 'S Was C h d I | e ngi ng Require: 5F;: Maximum single step scale-down amount

Require: cpjp: Minimum resource requirements (scale-down lower
bound)
1: function AUTOSCALE(x,, {X;})
normalized cpu + PrErrROCESS CPU{{X; })
PvP curve « SKU REcoMMENDATION TooL(normalized CPU, R)
PvP slopes +— CALCULATE SLOPES(PvP curve)
skew +— CALCULATE SKEW(PvF slopes)
5 ¢+ GET CURRENT SLOPE(PvP slopes, x:)
SF + CALCULATE SCALING FACTOR, SF(5, skew)
if 5 = s or Quantile({X;}) = {1 = my) + x. then
SF ¢ mun (5F, 5Fy)
else if s < 5; or Quantile{ {X;}) < m; » x, then
SF ¢+ max {—=5F, =5F;)
else if s == 0 and x,; at top of PvP curve then
SF « UpDATE SCALING FACTOR(PvFP curve, x,)

* We needed to demonstrate our
autoscaling algorithm for about
30 7-day long experiments to run,
but we only had 3 functioning K8s
clusters, and 10 days.

o e o L

._.._.._.._.
Lo

._.
=

SF + AprLY GUARDRAILS{SF, 5Fy,, 5F;, i, B)
return 5F

* Enter: VASIM

._.
ol

VASIM: Vertical Autoscaling Simulator

VASIM replicates common components found in autoscaler architectures
and replays CPU traces (real and estimated) with tunable parameters

| - 3 | i 1
Dr|g|r'|al | originatl | ¢ '
- i Anna Pavlenko, Karla Saur, Yiwen Zhu, B?‘hlli Kroth, Joyce Cahoon, Jesis Camacho-Rodriguez
(reactil winddw/™, P, ey i

if
J 1 Abstrac—{a pecvl yeurs, tescalng s snmred siifcat
i § 1 lblenklnnin(lndunpml mph.m.. cos cticleacy perlc-
mance
IHIH | n A [} I algorithus for hmamL wertical, -nd ybrbd scaling, nmnnl
| 1 instamces, VM spesifications, and resoarces like CPU, memory,
J i Ill and 10, have snserged. Various apprasches, including forecxsting

VASIM: Vertical Autoscaling Simulator Toolki

Tor o om €L nxags i Vs i Kiernetes . The tosth
1 replicates commen componvnts fand in sutoscaler architectures,
inclading (be controller, metrics collectss, recommendur, and

Fig. |, Comimen rewusce asowcaler andhilectue.

{ aned custons sutoscaling fanctions, are used. However, conducting
1 comprehensive end. remains a complex an
1] P | endenver due in the varlety of techsalogy comstrulais involved.
| - i This paper intraduces VAS13, an sutoscaling simulator toslkit
i i i h"_'"' # Ea ﬂT_ I n g desiged for testing recommendation algorithizs, with u particu.

forecasting window

" resousee updater, It enabes a comprehensive simulation of the e

tire sutascaling syséem’s behavior, with the eaibility to cusiomize

nrious parameters. tratlon, we showcase VASIni's

which has gained widespread aduption for deploying data
systems in the closd. During the provisioning of rescurces
in such depleyments, users often need (o specify their initial
requirements From a mysiad of optivns, including CPU cores,
memary sizes, and more, due to the difficulty of accurately
estimaling these requirements i advance, particularly given

fundamental in cload computing. B dynamically aptimizes
resource allocation, improving efficicncy i
this work, we consiter verrical amoscaling, which imvalves
the addition ar remeval of resources fram existing inslances,
i, VMs or cantainers. This is particularly selevant for mono-
lithic data systems with fized instance counts o limitations
in borizantal scaling due to the size of data copy cperatioes:
required for creating new instances [1].

Figure 1 illustrates the key components of the architecture af
2 centralized auascaler component designed for the dynamic

1 versatility across muliple use cases, ighlighting it effective- scaling of cluster rsources. The data sysiem is naning within
st in rﬂnr!mﬂ:uw}"m -lnlr:m; i::*u-llru wnr-;!lm a compute instance. The Contrmiler serves load balancing and
oemparing algorithin performance, and address uscaling- avai "

i luted <halleuges. This sudkrscores VASIY crfal ol in ensares bigh avalabiliy. 1t publishes telemeiry data related

- expediting algorithm develapment and refinement by providing 10 the data system, including realtime resource wsage ansd
& controlled envirenment fur testing and experimentation. allocation (CPUSmemory/A0PS). that is managed and stored

| | tudex Ferms—autsscaling, smulation, resource management, by the Metrics Server. The Recommender Algorithm, which is
daud computing. pluggable. analyzes these melrics to make resource allocation

g 1 P — decisions. Lastly. the Scaler meaitors the Decisians generated
| by the algosithm, conducts bealth and resource safety checks,
1 Cload computing has revolubionized data systems devel- and instructs the conraller 1o adjust tescurce allocation 2

. meal and mansgement, offering an-demand resaurces and needed. 1t is important 10 note that this same aupscaler can
i scalability. In this exvironmest, dasa systems are commonly arioe, 48 sppacied by previni

i deployed using VMs or, mare recenlly, using continers spgies [2]-[5). This includes scaling K8s pods', optimizing

ls trough madern platforms like Kobermetes (referred to as KBs), vng cpacities, or efficienily managing storage mesources

The development of aioscaling recommender algoridims
within the previows archilecture presents a significant chal
lenge, requiring cosily testing and meticulaus fine-uming pro.
ceures. This complexity arises fram multiple factars: (1) the
algarithms have aumenms parameters, making correct conlig
uration difficult; (2) real-world sesting across various scenarios

- | | the dynamic and ever-changing nalure of many workloads. g necesary, including sadden spikes and low demard pericds;
| As a result, users tend to fall inlo twa calegories: aver i (%) ppropriole metrics must be considerad o asmess

| 1 provirioning increases costs while ander provizioning causes gparithm effectiveness hased on wser requiremenss and budget
performance problems due (o “thooltling”™. constzints, These metrics include: (1) slack, dencting the

1 In respanse 10 these challenges. awoscaling has BECOME oyjupoous rescurces, such a3 CPU and memory, allocated

10 prevent resource strain during wiilization spikes; (2) thror
sling, representing instances. where CPU ar another rescurce
type lacks sufficient capacity, sesulting in performance issues
ar system crashes that can jecpardize system stahilisy. and
(3) mumber of realings, as excessive scaling can negatively

U o serves s u gl eacopralasion for o or o covsisers tat
st e e rcwnees witkin & s chster

I
|
|
period 2 period 3 Time
VASIM: Vertical Autoscaling Simulator Toolkit.
In IEEE International Conference on Data Engineering (ICDE 2024

VASIM: Vertical Autoscaling Simulator

You need 3 things: CPU Data, Autoscaling Algo, Parameters

TIMESTAMP, CPU_USAGE_ACTUAL

2023.84.02-00:09:00:000,7.2

2023.84.02-00:10:00:000,7.04
2023.04.02-00:11:00:000,6.88
2023.84.02-00:12:00:0080,6.72
2023.84.02-00:13:00:000,6.48
2023.04.02-00:14:00:000,6.50
2023.04.02-00:15:00:000,6.52
2023.84.02-00:10:00:000,6.54
2023.04.02-00:17:00:000,6.56

class SimpleAdditiveRecommender(Recommender):
def __init__(self, cluster_state_provider, save_metadata=True):
Copy the code at the top of this function as-is.

Put your parameters here hard-coded, or pass them in to your
"metadata.json’ file in the “algo_specific_config’ section.
self.my_param = self.algo_params.get("myparam", 2)

def run(self, recorded_data):
......
This method runs the recommender algorithm and returns the new number of
cores to scale to (new limit).

Inputs:
recorded_data (pd.DataFrame): The recorded metrics data for the current time window to
simulate
Returns:
latest_time (datetime): The latest time of the performance data.
new_limit (float): The new number of cores to scale to.

Your logic goes here! Look at the data in the 'recorded_data’ dataframe,
do a calculation, and return the number of cores to scale to.

return new_limit

"algo_specific_config": {

L

"general_config": {

L

"addend": 2

"window': 20,
"lag": 18,
"max_cpu_Llimit"
"min_cpu_Llimit"

&L

: 25,
: 2.8

Simulating & Tuning parameters

20000 -
When selecting parameters, we 17500 -
must find the ideal balance ¥ 15000 -
between: 2 12500 1
* slack (resources wasted) % 10000 1
* insufficient CPU (throttling) 7500 1

5000 A

X

t.:lf':g-lf;!' & i- i'

0 2000 4000 6000
Sum Insufficlent CPL

8000

Outline

* Code/demo: VASIM - Vertical Autoscaling SIMulator
* Try your own autoscaling algorithm!
* Autotuning: parameter tune your own algorithm
* How to get started with Cassandra

Go to GitHub...

https://github.com/microsoft/vasim

Code Blame 696 lines (696 loc) - 54.7 KB - (@

VASIM Autoscaling Simulator Toolkit Example

Goals
1. Applicability: Integration with various algorithms and parameter customization.
2. Simulation: Realistic workload modeling, achieved within minutes.
3. Parameter Tuning: Fine-tuning for optimal performance and cost savings.

4. Cost Analysis: Demonstrating potential cost savings.

Overview: Autoscaling Components

App-0 App-1
§ scales -

~—"__ triggers action
Metrics | Salr
Server Controller -

reads
| |

https://github.com/microsoft/vasim

VASIM web demo

e Qur notebook
https://github.com/microsoft/vasim/blob/main/examples/using vasim.ipynb

e Together with Cassandra
https://github.com/microsoft/vasim/tree/kasaur/e2e-livedemo/examples/cassandra

e And the web front-end

https://github.com/microsoft/vasim/tree/main/examples/streamlit

https://github.com/microsoft/vasim/blob/main/examples/using_vasim.ipynb
https://github.com/microsoft/vasim/blob/main/examples/using_vasim.ipynb
https://github.com/microsoft/vasim/tree/kasaur/e2e-livedemo/examples/cassandra
https://github.com/microsoft/vasim/tree/main/examples/streamlit

References

* Code repo: https://github.com/microsoft/vasim
e Simulator demo: examples -> streamlit
e Cassandra demo: examples -> cassandra

* Papers:

« VASIM: Vertical Autoscaling Simulator Toolkit Anna Pavlenko, Karla Saur, Yiwen Zhu, Brian
Kroth, Joyce Cahoon, Jesus Camacho Rodriguez. ICDE, 2024. [pdf]

« Vertically Autoscaling Monolithic Applications with CaaSPER: Scalable Container-as-a-
Service Performance Enhanced Resizing Algorithm for the Cloud Anna Pavlenko, Joyce
Cahoon, Yiwen Zhu, Brian Kroth, Michael Nelson, Andrew Carter, David Liao, Travis Wright,
Jesus Camacho Rodriguez, Karla Saur. SIGMOD, 2024. [pdf]

https://github.com/microsoft/vasim
https://www.microsoft.com/en-us/research/uploads/prod/2024/02/vasim_simulator.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2024/02/p28-pavlenko.pdf

	Slide 1
	Slide 2: About me
	Slide 3: About me
	Slide 4: Initial Project: Monolithic DB’s on K8s
	Slide 5: Vertically autoscaling with Cassandra
	Slide 6: Scenario: Vertically Scaling Generic DBs
	Slide 7: Generic Vertical Autoscaling (end-to-end)
	Slide 8: Outline
	Slide 9: Mechanism: scaling in-place
	Slide 10: Restarts hinder scaling nimbly in stateful workloads (even with containers!)
	Slide 11: In-place/no-restart scaling of CPUs
	Slide 12: What is the perf impact if the DB thinks it has n cores, but we actually give it m cores?
	Slide 13
	Slide 14: Perf impact of restart-free core scaling with Cassandra?
	Slide 15: Testing perf impact of restart-free core scaling
	Slide 16: What about memory??
	Slide 17: Outline
	Slide 18
	Slide 19: Why not K8s built-in Vertical Pod Autoscaler (VPA)?
	Slide 20: Vertical auto-scaling approach: 2-part approach
	Slide 21
	Slide 22: Reactive CaaSPER
	Slide 23: Reactive CaaSPER
	Slide 24: Vertical auto-scaling approach: Pluggable proactive portion
	Slide 25: Proactive: Real cyclical workload + Time series
	Slide 26: Combining Reactive + Proactive
	Slide 27: CaaSPER parameters
	Slide 28: At this point: panicking.
	Slide 29: VASIM: Vertical Autoscaling Simulator
	Slide 30: VASIM: Vertical Autoscaling Simulator
	Slide 31: Simulating & Tuning parameters
	Slide 32: Outline
	Slide 33: (Go to GitHub…)
	Slide 34: VASIM web demo
	Slide 35: References

