COMMUNITY

THE ASF CONFERENCE

CODE

BEGIN TRANSACTION

Apache Cassandra as a Transactional Database
C. Scott Andreas, Apple Inc.

Outline

— Apache Cassandra Today
— Transactional Capabilities Coming in Apache Cassandra
— Demo Application

— Future Directions

APACHE

Apache Cassandra Today

Capability Description Status

Ability to safely use tools like Liquibase to programmatically %
manage schema changes instead of executing by hand.

Programmatic DDL

Safe Drop / . . ,
Recreate Table Ability to recreate tables with same name after dropping.)(

Transactions Across . . - |
Partitions | Tables Ability to transact across different partition keys in a table. X

Fast Multi-Region Transacting across regions in 1x round trip. %
Transactions (Minimum write transaction: 2x WAN latency; 4x for paxos_v1)

Ability to enforce relationships and data integrity constraints %

Referential Integrity across tables via transactional capability.

Feature-Rich Ability to define an index on a column and perform prefix %
Secondary Indexes queries over SSTable-attached data structures.

APACHE

SOFTWARE FOUNDATION

Foundations

Rich
Features

Distributed
Transactions

Transactional Metadata

SAl: New high-performance index in Cassandra.
Materialized views possible via transactions.

State of the art, novel Paxos protocol powering
transactions across keys and tables at 1xRTT.

Serializable log of all changes to cluster config:
membership, ring ownership, schema, and more.

APACHE

SOFTWARE FOUNDATION

A Toy Fllesystem

— Feature: Users should be able to arrange files in folders and search folders by file type.
— Constraints: All files must belong to a user and a folder. All folders must belong to a user.

— Approach:

S O 00 N OO U & W N

hree tables: Users, Folders, and Files.

ON schema.txt — Desktop

CREATE TABLE demo.users(user text, first_name text, last_name text,
PRIMARY KEY (user)) WITH transactional_mode = 'full';

CREATE TABLE demo.folders(user text, folder_name text,
PRIMARY KEY (user, folder_name)) WITH transactional_mode = 'full';

CREATE TABLE demo.files(user text, file_name text, folder_name text, file_type text, contents blob,
PRIMARY KEY ((user), file_name)) WITH transactional _mode = 'full';

APACHE

SOFTWARE FOUNDATION

if

o cassandra-accord — L33

’W cscotta@amx cassandra-accord %

APACHE

SOFTWARE FOUNDATION

Demo Recap
Distributed Transactions

— Multi-Table Transactions: Atomic modification of records across tables

— Strict Serializable Reads: Strongest isolation level avallable to tables by default.
— Referential Integrity: Enforcement of relationship of entities across tables.

— Transactional DDL: Safe, rapid modification of tables; ability to drop/recreate.

® o schema.txt — Desktop
E
2 | CREATE TABLE demo.users(user text, first_name text, last_name text,
3 PRIMARY KEY (user)) WITH transactional_mode = 'full';
4
5 | CREATE TABLE demo.folders(user text, folder_name text,
6 PRIMARY KEY (user, folder_name)) WITH transactional_mode = 'full';
7
8 | CREATE TABLE demo.files(user text, file_name text, folder_name text, file_type text, contents blob,
9 PRIMARY KEY ((user), file_name)) WITH transactional _mode = 'full';
10
Line: 1 SQL C SoftTabs: 2v @ ¢ Symbols C

APACHE

SOFTWARE FOUNDATION

—®

|
[1R,1726407585947000 2(KW),1]
([10,1726407586268000 2(KW),1]
([10,1726407586308000 2(KW),1]
(J[10,1726407586351000 2(KW),1]
(J[10,1726407586395000 2(KW),1]
(J[10,1726407586426000 2(KW),1]
(J[10,1726407586466000 2(KW),1]
(J[10,1726407586499000 2(KW),1]
(J[10,1726407586532000 2(KW),1]
J[10,1 726407586557000,2€KW),1]

no transaction selected

B
4

O—ad
& -

PRE_ACCEPT_REQ
PRE_ACCEPT_RSP

AWAIT _REQ

AWAIT_RSP
CHECK_STATUS_REQ
STABLE_FAST PATH_REQ
CHECK_STATUS_RSP
ASYNC_AWAIT_COMPLETE_RS
READ_RSP
APPLY_MINIMAL_REQ
APPLY_ RSP
INFORM_DURABLE_REQ
SIMPLE_RSP

Referential Integrity
Semi-Relational Features in Cassandra

Referential integrity enforces relationships between records across tables.
E.g., “All files must be Iin a valid folder. All folders must belong to an active user.”

Distributed transactions enable enforcement of these relationships in Cassandra.

®@ O referential-integrity.sql — go-faster

—— Insert some files of different types, asserting valid account and target folder.
BEGIN TRANSACTION
LET valid _user = (SELECT user FROM demo.users WHERE user = 'demo@example.com');
LET existing_folder = (SELECT folder_name FROM demo.folders WHERE user = 'demo@example.com' AND folder_name='Home');

IF valid_user IS NOT NULL AND existing_folder IS NOT NULL THEN
INSERT INTO demo.files (user, file_name, folder_name, file_type, contents)
VALUES ('demo@example.com', 'Test', 'Home', 'txt', textAsBlob('Welcome...'));
INSERT INTO demo.files (user, file_name, folder_name, file_type, contents)
VALUES ('demo@example.com', 'Photo', 'Home', 'jpg', textAsBlob('...'));
END IF
COMMIT TRANSACTION;

O OIN|IO U & W IN =2

=
w N =R e

_ Line: 7:5-7:67 SQL C SoftTabs: 2v ©FT

<

APACHE

SOFTWARE FOUNDATION

Transactional Schema
Managing Cluster State in Cassandra

- E
- A

— Epochs enable safe and rapid changes to cluster state via Paxos.

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

AbstractLocalProcessor.
AbstractLocalProcessor.
AbstractLocalProcessor.
AbstractLocalProcessor.
AbstractLocalProcessor.
AbstractLocalProcessor.
AbstractLocalProcessor.
AbstractLocalProcessor.
AbstractLocalProcessor.
AbstractLocalProcessor.
AbstractLocalProcessor.
AbstractLocalProcessor.

Committed
Committed
Committed
Committed
Committed
Committed
Committed
Committed
Committed
Committed
Committed
Committed

= Desktop — -zsh — 155x%12

AlterSchema{schemaTransformation=CreateKeyspaceStatement (demo)}. Ng
AlterSchema{schemaTransformation=CreateTableStatement (demo, users)
AlterSchema{schemaTransformation=CreateTableStatement (demo, folders

nochs ensure all replicas agree on cluster configuration when serving a request.
| changes to cluster config pass through a serialized log and increment the epoch.

AlterSchema{schemaTransformation=CreateTableStatement (demo, files)}. New epoch is Epoch{epoch=8}

AlterSchema{schemaTransformation=DropColumns (demo, users)}. New epoch is Epoch{epoch=9}

AlterSchema{schemaTransformation=CreateIndexStatement (demo, file_type)}. New epoch is Epoch{epoch=10}
AlterSchema{schemaTransformation=DropIndexStatement (demo, files_idx)}. New epoch is Epoch{epoch=11}
AlterSchema{schemaTransformation=DropIndexStatement (demo, file_type)}. New epoch is Epoch{epoch=12}
AlterSchema{schemaTransformation=CreateIndexStatement (demo, files_by_type)}. New epoch is Epoch{epoch=13}

AlterSchema{schemaTransformation=AddColumns (demo, users)}. New epoch is Epoch{epoch=14}
AlterSchema{schemaTransformation=AddColumns (demo, folders)}. New epoch is Epoch{epoch=15}
AlterSchema{schemaTransformation=DropColumns (demo, folders)}. New epoch is Epoch{epoch=16}

APACHE

SOFTWARE FOUNDATION

Transactional Schema
Transactional DDL Is safer DDL

— Keyspaces and Tables in Cassandra are now versioned by epoch.

— Impossible for schema conflicts to emerge within a cluster.

— Impossible for duplicate table IDs to emerge for same CREATE TABLE statement.

— Safe to drop and recreate tables with same names — C* will recognize the difference.

INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO
INFO

AbstractLocalProcessor.
AbstractLocalProcessor.
AbstractLocalProcessor.
AbstractLocalProcessor.
AbstractLocalProcessor.
AbstractLocalProcessor.
AbstractLocalProcessor.
AbstractLocalProcessor.
AbstractLocalProcessor.
AbstractLocalProcessor.
AbstractLocalProcessor.
AbstractLocalProcessor.

Committed
Committed
Committed
Committed
Committed
Committed
Committed
Committed
Committed
Committed
Committed
Committed

AlterSchema{schemaTransformation=CreateKeyspaceStatement (demo)}. Ng
AlterSchema{schemaTransformation=CreateTableStatement (demo, users)
AlterSchema{schemaTransformation=CreateTableStatement (demo, folders

= Desktop — -zsh — 155x%12

AlterSchema{schemaTransformation=CreateTableStatement (demo, files)}. New epoch is Epoch{epoch=8}

AlterSchema{schemaTransformation=DropColumns (demo, users)}. New epoch is Epoch{epoch=9}

AlterSchema{schemaTransformation=CreateIndexStatement (demo, file_type)}. New epoch is Epoch{epoch=10}
AlterSchema{schemaTransformation=DropIndexStatement (demo, files_idx)}. New epoch is Epoch{epoch=11}
AlterSchema{schemaTransformation=DropIndexStatement (demo, file_type)}. New epoch is Epoch{epoch=12}
AlterSchema{schemaTransformation=CreateIndexStatement (demo, files_by_type)}. New epoch is Epoch{epoch=13}

AlterSchema{schemaTransformation=AddColumns (demo, users)}. New epoch is Epoch{epoch=14}
AlterSchema{schemaTransformation=AddColumns (demo, folders)}. New epoch is Epoch{epoch=15}
AlterSchema{schemaTransformation=DropColumns (demo, folders)}. New epoch is Epoch{epoch=16}

APACHE

SOFTWARE FOUNDATION

Transacting Across Tables and Partitions
Distributed Transactions

‘ransactions make data modeling simpler.
"hink In terms of your application’s data model. No complex schemes for maintaining consistency.

Transactions make building applications on Cassandra safer.

® O referential-integrity.sql — go-faster

(Y

—— Insert some files of different types, asserting valid account and target folder.
BEGIN TRANSACTION
LET valid_user = (SELECT user FROM demo.users WHERE user = 'demo@example.com');
LET existing_folder = (SELECT folder_name FROM demo.folders WHERE user = 'demo@example.com' AND folder_name='Home');

IF valid_user IS NOT NULL AND existing_folder IS NOT NULL THEN
INSERT INTO demo.files (user, file_name, folder_name, file_type, contents)
VALUES ('demo@example.com', 'Test', 'Home', 'txt', textAsBlob('Welcome...'));
INSERT INTO demo.files (user, file_name, folder_name, file_type, contents)
VALUES ('demo@example.com', 'Photo', 'Home', 'jpg', textAsBlob('...'));
END IF
COMMIT TRANSACTION;

O 00 O U0 & W N

o S
w N R

<

Line: 1 SQL { SoftTabs: 2v ©®F¢

APACHE

SOFTWARE FOUNDATION

® [o o o
Single Key Multi Key
. Round-Trips Round-Trips
Scal Isolation 0 Leaderless
cale S Cloud Local Remote Local Remote
Read Write Read Write | Read Write Read Write

Cassandra [Accord

APACHE

SOFTWARE FOUNDATION

Secondary Indexes
Storage-Attached indexes (SAl)

Work best as a partition-restricted index.

Ensures that your queries contact only a single replica set and don't scatter-gather.

Efficient storage mechanism.

Postings-list design more efficient than any other C* secondary index mechanism.

Feature-rich

AND/OR logic, IN logic, numeric ranges, collections CONTAINS, optional case-sensitivity.

Anticipated In next Iteration

Prefix queries (LIKE) and OR queries. Major enhancement to Cassandra UX.

APACHE

SOFTWARE FOUNDATION

Apache Cassandra Today

Capability Description Status

Ability to safely use tools like Liquibase to programmatically %
manage schema changes instead of executing by hand.

Programmatic DDL

Safe Drop / . . ,
Recreate Table Ability to recreate tables with same name after dropping.)(

Transactions Across . . - |
Partitions | Tables Ability to transact across different partition keys in a table. X

Fast Multi-Region Transacting across regions in 1x round trip. %
Transactions (Minimum write transaction: 2x WAN latency; 4x for paxos_v1)

Ability to enforce relationships and data integrity constraints %

Referential Integrity across tables via transactional capability.

Feature-Rich Ability to define an index on a column and perform prefix %
Secondary Indexes queries over SSTable-attached data structures.

APACHE

SOFTWARE FOUNDATION

Apache Cassandra 5.1+

Capability Description Status

Ability to safely use tools like Liquibase to programmatically
manage schema changes instead of executing by hand.

Programmatic DDL

Safe Drop / . . , —
. \4
Recreate Table Ability to recreate tables with same name after dropping V|

Transactions Across . : - . __
Partitions | Tables Ability to transact across different partition keys in a table.

Fast Multi-Region Transacting across regions in 1x round trip.
Transactions (Minimum write transaction: 2x WAN latency; 4x for paxos_v1)

Ability to enforce relationships and data integrity constraints

Referential Integrity across tables via transactional capability.

Feature-Rich Ability to define an index on a column and perform prefix
Secondary Indexes queries over SSTable-attached data structures.

APACHE

SOFTWARE FOUNDATION

Draft Whitepaper for CEP-15: General Purpose Transactions

Behind the Scenes

CEP-15: Fast General Purpose Transactions

Elliott Smith, Benedict Zhang, Tony Eggleston, Blake
benedict@apple.com nudzhang @umich.edu beggleston@apple.com

— Accord: Paxos-based distributed ceotaoupplecom
transaction protocol

Modern applications replicate and shard their state to achieve fault tolerance and scalable performance. This presents

a coordination problem that modern databases address using leader-based techniques that entail trade-offs: either a

scalability bottleneck or weaker isolation. Recent advances in leaderless protocols that claim to address this coordination

problem have not yet translated into production systems. This paper outlines distinct performance compromises entailed

o by existing leaderless protocols in comparison to leader-based approaches. We propose techniques to address these

short-comings and describe a new distributed transaction protocol ACCORD, integrating these techniques. ACCORD is

s I_e a d e r | e S S t ra n S a C t I O n S C a n b e the first protocol to achieve the same steady-state performance as leader-based protocols under important conditions
such as contention and failure, while delivering the benefits of leaderless approaches to scaling, transaction isolation

and geo-distributed client latency. We propose that this combination of features makes ACCORD uniquely suitable for

i n i t i a te d fro m a ny r e g i O n . implementing general purpose transactions in Apache Cassandra.

1 Introduction

Modern applications rely upon remote database services to ensure their state is durable and available to clients. To
provide these properties, modern databases partition their state into geo-replicated shards. This permits some tolerated
. N . combination of failures to coincide without interrupting the service, while ensuring the database may scale to meet user

demand. However, a distributed coordination problem is introduced for transaction execution.
— T ra n S a C t I O n S exe C u te I n -| X r O u n d - t r I p Real-world database systems address this by imposing restrictions on functionality or sacrificing performance.
Systems that offer transactions using Raft [34] or Multi-Paxos [21] are now common-place |]4, 13,14,16,29,36,42,44,47],
. but most do not offer cross-shard transactions. These were first introduced by Spanner [8], but required specialised
m 3 X f a | | b a C k hardware and multiple WAN round-trips. More recently, systems using commodity hardware have begun to catch up:
I n C O I I I O n C a S e (° FaunaDB and FoundationDB offer strict-serializable isolation, but order transactions with a global leader process [14,47];
CockroachDB, YugaByte and DynamoDB avoid this bottleneck, but claim only serializable isolation [6,40,}44]. Neither
group therefore achieves the optimal combination of isolation properties and scalability. Furthermore, being leader-
based these systems require additional wide area round-trips for clients that are not co-located with the leader, and for

transactions that involve keys whose leaders are not co-located.

Raft and Multi-Paxos confer some important properties though: they may assign their leader role to any healthy
° ° process and require only a simple majority of votes, so they may suffer the loss of any minority of replicas and be able
— va I d a t e d V | a fo r I I I a ‘ p r O O r e S e a r C to promptly restore their prior steady-state performance. Transactions that share leaders also do not suffer contention
! penalties, and reads may be performed concurrently - they may even circumvent the leader entirely [23,31]. Leaderless
quorum-based protocols have been proposed [2,11,12,23, 30,32,45] that utilise a fast-path to achieve optimal commit

: : ' latency under low contention, but these have not been used in real systems. We propose that this is in part explained by
collaboration, and simulation. ey oo, s et sl

! In particular, these protocols have fast-path quorums that are disabled by fewer failures than are tolerated overall.

For example, Tempo [11] tolerates f failures using 2f + 1 replicas, but at most one replica may fail before its fast-path

is unable to reach decisions. Tapir [45] fares better, with a fast path that survives [%J failures - but this is half as many
as it tolerates overall, and its optimistic concurrency control fails to guarantee forward progress for all transactions.

APACHE

SOFTWARE FOUNDATION

Transactional Tables

CREATE TABLE demo.tbl(col text PRIMARY KEY (col))
WITH TRANSACTIONAL_MODE = ‘xxx’;

Mode Behavior Vibe

“off” Distributed transactions via Accord disabled (paxos_v1 and paxos_v2 supported). (©9)

“unsafe"

Permit writes via standard StorageProxy write path. Can result in multiple outcomes @
computed for transactions depending on data written via non-SERIAL writes.

Allows non-serial writes, but still forces blocking read repair via Accord. Safe to -

6l 1 7
unsafe_writes perform non-serial reads of Accord data, but unsafe to write data Accord may read.

Executes writes via Accord. Commits at provided consistency level to enable data to
be read via non-serial reads. Safe to read/write data Accord will write.

(<

“mixed_reads”

“full" Full serializable semantics for all queries. Consistency levels do not apply. @

APACHE

SOFTWARE FOUNDATION

Transaction Syntax

Overview
Initializes a transaction block ——— BEGIN TRANSACTION
Binds results of a query to a variable — LET existing_user = (SELECT user |
Defines return value (pre-execution) ——— SELECT user FROM demo.users WHERE
Predicate that tests whether to apply ——— IF existing_user IS NULL THEN
Atomic batch of mutations across tables. —- INSERT INTO demo.users (user,
VALUES (‘demo@example.com’
INSERT INTO demo.folders (user
VALUES ('demo@example.com’
INSERT INTO demo.files (user,
VALUES (‘demo@example.com’
Conclude predicate. ——— END IF
Concludes a transaction block. — COMMIT TRANSACTION;

APACHE

SOFTWARE FOUNDATION

Composable with Features
Transactions and Secondary Indexes (SAl)

Transactions and Secondary Indexes are composable with Accord.
— In transactional_mode=full, all reads and writes pass through the transactional subsystem.

ACID transactional guarantees apply to secondary indexes.

— On write path, transactions mutate index and guarantee atomic visibility to transactional reads.
— On read path, transaction protocol ensures execution happens-after all transactions with conflicting
dependencies have committed.

APACHE

SOFTWARE FOUNDATION

Composable with Features
Materialized Views

Distributed Transactions enable query-level construction of materialized views.
Materialized views can be maintained via transactional inserts on the write path.

® O mv.sql — Desktop
1 —— Create our "files" table.
2 CREATE TABLE demo.files(user text, file_name text, folder_name text, file_type text, contents blob,
3 PRIMARY KEY ((user), file _name)) WITH transactional mode = 'full';
4
b —— Materialized view keyed by hash of file contents.
6 CREATE TABLE demo.files _hashed(hash text, user text, file_name text,
7 PRIMARY KEY (hash)) WITH transactional_mode = 'full';
8
9 —— Insert a file and maintain our materialized view.
10 BEGIN TRANSACTION
11 INSERT INTO demo.files(user, file_name, folder_name, file_type, contents)
12 VALUES ('demo@example.com', 'README2', 'Home', 'txt', mask_hash(textAsBlob('Welcome..."')));
13
14 INSERT INTO demo.files hashed(hash text, user, file_name)
15 VALUES (mask_hash(textAsBlob('Welcome..."')), 'demo@example.com', 'README');
16 COMMIT TRANSACTION;
Line: 16:20 SQL C SoftTabs: 2v ¢ CREATE TABLE demo C

APACHE

SOFTWARE FOUNDATION

Future Directions
Where to from here?

Mmproving ergonomics of whether a transaction was applied.
t's inconvenient to need to re-select the predicate you're testing.

Multi-result select statements.
It would be useful to return an array of resultsets from selects in a transaction.

Strict-Serializable Snapshots
Accord may enable strict-serializable snapshots via an exclusive sync point.

Snapshot Isolation
Adding record versioning may enable Cassandra to support proper MVCC.

Foreign Key Constraints
Bringing referential integrity constraints into database schema natively.

APACHE

SOFTWARE FOUNDATION

Development Status
What's Ahead?

GitHub Branch: cep-15-accord
https://github.com/apache/cassandra/tree/cep-15-accord

Journal: Startup / Replay Complete
Write-ahead log for Accord transactions providing durability across process restarts.

Testing + Validation of Implementation
Advancing from burn tests to full-database simulation.

Performance
Baseline target: “As inexpensive as paxos_v2 to execute, with half the round trips.”

Merging to Trunk

Anticipate merging to trunk in 1 -2 months. Request for review + involvement on mailing list.

APACHE

SOFTWARE FOUNDATION

COMMUNITY

THE ASF CONFERENCE

CODE

BEGIN TRANSACTION

Apache Cassandra as a Transactional Database
C. Scott Andreas, Apple Inc.

