
RADIUS-BASED APPROXIMATE NEAR-
NEIGHBOR SEARCH USING HNSW GRAPHS

ABOUT

Aditya Prakash
Principal Data Scientist

Amazon

linkedin.com/in/aditya-prakash-6b234410

Kaival Parikh
Software Engineer

Amazon

linkedin.com/in/kaivalnp

http://linkedin.com/in/aditya-prakash-6b234410
http://linkedin.com/in/kaivalnp

AGENDA

• Product Search at Amazon

• Vector Search

• Considerations in a production system

• Lucene implementation using HNSW graphs

• Performance

• Q&A

PRODUCT SEARCH AT AMAZON

Matching
(Lexical + Semantic)

Filtering

Ranking D
ec

re
as

in
g

co
un

t
of

 p
ro

du
ct

s

Top-N products shown to customers

• Lexical + Semantic matching, filtering and ranking stages

• Query-time filters such as availability, deliverability, brand-
preference, etc. are applied

• Multi-stage ranking models are used, which have access to
arbitrary runtime and indexed features

• Cosine-similarity scores from semantic matching have a
limited role in the final ranking of products

VECTOR SEARCH

• Vectors are points in an N-dimensional space, and are usually
represented as a list of integer or float values.

• Machine learning models typically represent text, image, and
videos as vectors, allowing us to easily find similar text, images
etc. using vector-similarity search.

• The following similarity measures are commonly used:

• Euclidean Distance (d)

• Cosine-Similarity (Ɵ)

• Inner-Product (IP = a * b * cosƟ)

Ɵ

a

b

d

b*
co
sƟ

TYPES OF VECTOR SEARCH

Radius Based Vector SearchK-Nearest Neighbor (KNN) Vector Search

1
3

2 2

3
1

4

CONSIDERATIONS

Reduce irrelevant results
• Query vector present in a sparse part of the space

• Obscure query

• Relevant documents not present in the catalog (or not indexed for
vector search)

• Show fewer results instead of unrelated ones

• Minimum similarity threshold with the query

• Unnecessary computations in KNN queries where some of top K
results lie outside similarity threshold

CONSIDERATIONS

Multiple matching sources + result rescoring
• Matching sources like lexical terms, behavioral data, more than one

vector field, etc.

• Final rescoring has a larger feature set than semantic model

• Potential of missed results because hits outside top K (but still similar
enough to the query) are valid candidates for matching

K-Nearest Neighbor (KNN) Vector Search

CONSIDERATIONS

Multiple matching sources + result rescoring
• Matching sources like lexical terms, behavioral data, more than one

vector field, etc.

• Final rescoring has a larger feature set than semantic model

• Reduced potential of missed results because all hits similar enough to
the query are considered as candidates for matching

Radius Based Vector Search

CONSIDERATIONS

Query-time filters
• Like availability, delivery speed, brand, etc.

• The K-Nearest Neighbors of the query may not satisfy these
constraints

• Lucene solves for this using pre-filtering, but comes at a cost

• Collect all docs matching the constraints in a set

• Only match on these documents during retrieval

• Even if this set is cached and re-used across queries, becomes cost
inhibitive due to heap usage with a large number of unique filters

K-Nearest Neighbor (KNN) Vector Search

CONSIDERATIONS

Query-time filters
• Like availability, delivery speed, brand, etc.

• All vectors similar enough to the query are already matched

• No explicit need for pre-filtering, rely on post-filtering

Radius Based Vector Search

CONSIDERATIONS

Distributed nature
• Lucene has independently searchable sub-indexes called

segments, and vectors are spread across them

• Segment-level top K vectors need to be collected at a single
place to determine results

• Caveats like custom parallelism and non-cacheable

Lucene Index

Lucene
Segment

Lucene
Segment

Lucene
Segment

Retain top K
+

Rewrite into wrapper query

Scorers for each segment

K-Nearest Neighbor (KNN) Vector Search

CONSIDERATIONS

Distributed nature
• Lucene has independently searchable sub-indexes called

segments, and vectors are spread across them

• Each document is independently evaluated as a hit (without
needing scores of other documents)

• Segment-level results are additive and need not be collected at a
single place

• Simpler query implementation and cacheable!

Lucene Index

Lucene
Segment

Lucene
Segment

Lucene
Segment

Scorers for each segment

Radius Based Vector Search

LUCENE IMPLEMENTATION

Hierarchical Navigable Small World (HNSW)
Graphs (https://arxiv.org/pdf/1603.09320)

• Already implemented since Lucene 9.1 (LUCENE-9004,
LUCENE-10054) to perform KNN search

• Relies on document-document similarity to connect each
vector to its closest (and diverse) neighbors

• Documents are spread across multiple layers, with each layer
having an exponentially increasing superset of documents of
the layer above

• Upper layers provide a suitable entry point for actual search
in the last layer

• A priority queue of K results is maintained in the last layer,
and search stops when the best available candidate cannot
replace any collected result

Image Source

https://arxiv.org/pdf/1603.09320
https://issues.apache.org/jira/browse/LUCENE-9004
https://issues.apache.org/jira/browse/LUCENE-10054
https://towardsdatascience.com/similarity-search-part-4-hierarchical-navigable-small-world-hnsw-2aad4fe87d37

LUCENE IMPLEMENTATION

Simulating a Radius-based vector search
• Large K with post-filtering?

• Incurs additional latency

• Missed results if not large enough

• Predictive query-level K?

• Another layer of approximation + complexity

K-Nearest Neighbor (KNN) Vector Search

LUCENE IMPLEMENTATION

Algorithm
• Released in Lucene 9.10 (GH#12679)

• Change graph traversal and result collection criteria to be radius-based
instead of count-based

• HNSW graphs are valuable

• Minimally invasive

• Introduces two parameters, traversalSimilarity and resultSimilarity

• Traverse all nodes with similarity score higher than traversalSimilarity

• Collect all traversed nodes with similarity score higher than
resultSimilarity

• Clause to continue traversal as long as better scoring nodes are available
(handle edge cases where entry node lies outside traversalSimilarity)

https://github.com/apache/lucene/pull/12679

LUCENE IMPLEMENTATION

Benefits
• Exists as a tunable parameter to reach results where some node along

the path is lower scoring than resultSimilarity (recall v/s QPS)

• Number of nodes traversed and collected is locality-sensitive (more
nodes in dense parts of the graph, and vice versa)

• No need to maintain priority queue of results for highest-scoring top K

• Graph search can be performed in a more appropriate place in the
Lucene query flow

• Cacheable!

PARAMETER TUNING

tr*=320

tr=315

tr=310

tr=305
tr=300

tr=295
290 285

*tr = traversal similarity for Cohere vectors

PERFORMANCE COMPARISON

• Number of documents above a threshold has been used as a
baseline for recall calculation

• As a consequence, low values of top K in the KNN setup result in
very low recall values

• Points plotted in the charts are for varying values of top K for KNN,
and varying values of traversalSimilarity for RBVS

• RBVS is capable of providing very high recall without
compromising on QPS for applications which require to find all
documents above a given threshold

k=100

k=1000

k=100

k=200

k=500 k=1000 k=2000

k=200
k=500

tr=320

tr=315

tr=310

k=100k=100

k=10000

k=2000
k=1000

k=1000

tr=0.990

tr=0.987

TIME COMPLEXITY

• In brute-force (or exact) search, doubling the number of
documents leads to doubling in the number of matches for a
fixed threshold

• Time complexity is dictated by the number of nodes visited
during graph search, which has an upper bound of actual
number of vectors with a score above traversal-threshold

• In actual simulations for RBVS, we found the number of nodes
traversed, and thus latency, increases linearly with increase in
number of documents

Total number of documents
• 1000
• 500

THANK YOU

