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APACHE

SLUCENE PRODUCT SEARCH AT AMAZON

______

Lexical + Semantic matching, filtering and ranking stages

Matching

(Lexical + Semantic)
Query-time filters such as availability, deliverability, brand-

preference, etc. are applied

Filtering

Multi-stage ranking models are used, which have access to
arbitrary runtime and indexed features

Decreasing count of products

Ranking

Cosine-similarity scores from semantic matching have a
limited role in the final ranking of products

[ Top-N products shown to customers ]




VECTOR SEARCH

Vectors are points in an N-dimensional space, and are usually
represented as a list of integer or float values.

Machine learning models typically represent text, image, and
videos as vectors, allowing us to easily find similar text, images
etc. using vector-similarity search.

The following similarity measures are commonly used:

Euclidean Distance (d)

Cosine-Similarity (6)

Inner-Product (IP = a * b * cosB)




TYPES OF VECTOR SEARCH
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K-Nearest Neighbor (KNN) Vector Search

Radius Based Vector Search




CONSIDERATIONS

Reduce irrelevant results
Query vector present in a sparse part of the space
Obscure query

Relevant documents not present in the catalog (or not indexed for
vector search)

Show fewer results instead of unrelated ones

Minimum similarity threshold with the query O

Unnecessary computations in KNN queries where some of top K '
results lie outside similarity threshold ‘
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CONSIDERATIONS

Multiple matching sources + result rescoring O

Matching sources like lexical terms, behavioral data, more than one
vector field, etc.

Final rescoring has a larger feature set than semantic model @

Potential of missed results because hits outside top K (but still similar O Q
enough to the query) are valid candidates for matching '
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K-Nearest Neighbor (KNN) Vector Search



CONSIDERATIONS

Multiple matching sources + result rescoring

Matching sources like lexical terms, behavioral data, more than one
vector field, etc.

Final rescoring has a larger feature set than semantic model

Reduced potential of missed results because all hits similar enough to
the query are considered as candidates for matching
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Radius Based Vector Search



CONSIDERATIONS

Query-time filters
Like availability, delivery speed, brand, etc.

The K-Nearest Neighbors of the query may not satisfy these
constraints

Lucene solves for this using pre-filtering, but comes at a cost
Collect all docs matching the constraints in a set
Only match on these documents during retrieval %

Even if this set is cached and re-used across queries, becomes cost
inhibitive due to heap usage with a large number of unique filters
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K-Nearest Neighbor (KNN) Vector Search



CONSIDERATIONS

Query-time filters O

Like availability, delivery speed, brand, etc.
All vectors similar enough to the query are already matched

No explicit need for pre-filtering, rely on post-filtering O
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Radius Based Vector Search



CONSIDERATIONS

Distributed nature

Lucene has independently searchable sub-indexes called
segments, and vectors are spread across them

Segment-level top K vectors need to be collected at a single
place to determine results

Caveats like custom parallelism and non-cacheable

K-Nearest Neighbor (KNN) Vector Search

Lucene Index

Lucene Lucene Lucene
Segment Segment Segment
Retain top K

+
Rewrite into wrapper query

Scorers for each segment




CONSIDERATIONS

Distributed nature

Lucene has independently searchable sub-indexes called
segments, and vectors are spread across them

Each document is independently evaluated as a hit (without
needing scores of other documents)

Segment-level results are additive and need not be collected at a
single place

Simpler query implementation and cacheable!

Radius Based Vector Search

Lucene Index

Lucene
Segment

Lucene
Segment

Lucene
Segment

Scorers for each segment




LUCENE IMPLEMENTATION

Hierarchical Navigable Small World (HNSWV)
Graphs (https://arxiv.org/pdf/1603.09320)

Already implemented since Lucene 9.1 (LUCENE-9004,
LUCENE-10054) to perform KNN search

Relies on document-document similarity to connect each
vector to its closest (and diverse) neighbors

Documents are spread across multiple layers, with each layer
having an exponentially increasing superset of documents of
the layer above

Upper layers provide a suitable entry point for actual search
in the last layer

A priority queue of K results is maintained in the last layer,
and search stops when the best available candidate cannot
replace any collected result
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https://arxiv.org/pdf/1603.09320
https://issues.apache.org/jira/browse/LUCENE-9004
https://issues.apache.org/jira/browse/LUCENE-10054
https://towardsdatascience.com/similarity-search-part-4-hierarchical-navigable-small-world-hnsw-2aad4fe87d37

LUCENE IMPLEMENTATION

Simulating a Radius-based vector search O
Large K with post-filtering?
Incurs additional latency
Missed results if not large enough
Predictive query-level K?

Another layer of approximation + complexity
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K-Nearest Neighbor (KNN) Vector Search



LUCENE IMPLEMENTATION

Algorithm
Released in Lucene 9.10 (GH#12679)

Change graph traversal and result collection criteria to be radius-based
instead of count-based

HNSW graphs are valuable

Minimally invasive
Introduces two parameters, traversalSimilarity and resultSimilarity
Traverse all nodes with similarity score higher than traversalSimilarity

Collect all traversed nodes with similarity score higher than
resultSimilarity

Clause to continue traversal as long as better scoring nodes are available
(handle edge cases where entry node lies outside traversalSimilarity)



https://github.com/apache/lucene/pull/12679

Benefits

Exists as a tunable parameter to reach results where some node along
the path is lower scoring than resultSimilarity (recall v/s QPS)

Number of nodes traversed and collected is locality-sensitive (more
nodes in dense parts of the graph, and vice versa)

No need to maintain priority queue of results for highest-scoring top K

Graph search can be performed in a more appropriate place in the

Lucene query flow

Cacheable!

LUCENE IMPLEMENTATION

[] Nodes collected with B =0
[] Nodes collected with B = Bg
] Nodes missed with B = Bg



QPS

PARAMETER TUNING
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PERFORMANCE COMPARISON

Number of documents above a threshold has been used as a
baseline for recall calculation

As a consequence, low values of top K in the KNN setup result in
very low recall values

Points plotted in the charts are for varying values of top K for KNN,
and varying values of traversalSimilarity for RBVS

RBVS is capable of providing very high recall without

compromising on QPS for applications which require to find all
documents above a given threshold
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TIME COMPLEXITY

1000 Total number of documents

Num matches above a threshold

" I 1000
* In brute-force (or exact) search, doubling the number of £ ZZZ - 500
. 9 £
documents leads to doubling in the number of matches fora 2 700
fixed threshold R
E 400
E 300 B B
- Time complexity is dictated by the number of nodes visited & .
during graph search, which has an upper bound of actual 0
0.4 0.5 0.6 0.7 0.8 0.9

number of vectors with a score above traversal-threshold

* In actual simulations for RBVS, we found the number of nodes

120

Cosine-similarity

GloVe (maxConn=32, beamWidth=200)

traversalSimilarity

100

traversed, and thus latency, increases linearly with increase in 8o

number of documents

60

Latency

40

20

0.97
—x— 0.98
—=— 0.99

0.2M 0.4M 0.6M 0.8M
Number of documents

1M

1.0



THANK YOU




