
The Cool and the Cruel of MicroService

Mark Struberg,
RISE GmbH,
Apache Software Foundation,
INSO TU Wien

About me

● Mark Struberg
● 25 years in the industry
● Apache Software Foundation member
● struberg [at] apache.org
● RISE GmbH employee
● TU-Wien / INSO researcher
● Committer / PMC for Apache OpenWebBeans,

MyFaces, TomEE, Maven, OpenJPA, BVal, Isis,
DeltaSpike, JBoss Arquillian, ...

● Java JCP Expert Group member and spec lead
● MicroProfile Spec Author
● Twitter: @struberg

The Weapon of Choice

● "If you have a hammer,
every problem seems to be a nail"

● "Es gibt für jede Schraube
den passenden Hammer!"

● "Use the right tool for the right job"
● Every design decision has pros and cons!

– There is no solution which perfcectly fits all your problems
– Example: centralised vs de-centralised systems,

App evolution in waves: HOST -> server/client PCs ->
HTML webapps -> AJAX -> native phone apps ->
microservices ->?

● Know your weapons!
● Know your problems!

MicroServices

If MicroServices are the answer

● ... what was the question or problem causing it?
● Monoliths

– extremely recursive inner dependencies
– No clear separation of concerns
– No clear inner design ("take whatever you need")
– Not easy to scale
– Hard to roll outs

What is a 'MicroService'?

● https://smartbear.com/learn/api-design/what-are-microservices/

Essentially, microservice architecture is a
method of developing software applications

as a suite of independently deployable,
small, modular services

in which each service runs a unique process
and communicates through a well-defined,

 lightweight mechanism
to serve a business goal.

How big is a MicroService

● MicroServices are 'small, independent systems'
– but how big is 'small'?
– What is the size of a typical MicroService

● How big is a JavaEE server in contrast?
– Apache TomEE: 35MB

● https://tomee.apache.org
– Apache Meecrowave: 9MB

● https://openwebbeans.apache.org/meecrowave

Independent Services

● Are MicroServices really independent of each
other?

● How about versioning?
● How to detect if a feature is unused?
● Independent Data

– A MicroService is self contained - including it's data
● Independent Programming Language and

Frameworks
– At least when using REST
– Not that easy with messaging

Data Consistency and Transactions

● XA requires fast connections
– does not really work over MicroServices

● Eventual consistency
● Compensations
● Persistent Messaging

Netflix does all that?

● NO, of course not!

Fallacies of Distributed Computing

● As postulated by Peter L. Deutsch (Sun
Microsystems):
– The network is reliable.
– Latency is zero.
– Bandwidth is infinite.
– The network is secure.
– Topology doesn't change.
– There is one administrator.
– Transport cost is zero.
– The network is homogeneous.

Testing the ball of mud

● Testing Distributed Applications is no easy task
● 3 strategies

– Massive Integration Testing
– Mocking the hell out of your project
– Capture & Replay
– Traffic Splitter (e.g. istio)

The takeaway?

Trading off Problems

● Problems with a Monolith
.... can be solved by doing MicroServices

● Problems with MicroServices
.... can be solved by doing a Monolith

● You just trade off problems
● Different sides of the same coin
● Actually it's not MicroService vs Monolith but

Centralised vs Distributed

Useful MicroService tricks

● Monoliths have the same problems when talking
with other systems!
– No XA, need to store steps separately or use a state

machine (process engine, status in the DB,
Compensations, etc)

– Circuit Breakers
– Bulkheads

● Separate high-volume/low consistency areas
from important areas

● Split your whole problem in distinct parts with
their own Database (Conway's Law)
– Those parts don't need to be 'micro' though!

Useful MicroService tricks

● Monoliths have the same problems when talking
with other systems!
– No XA, need to store steps separately or use a state

machine (process engine, status in the DB,
Compensations, etc)

– Circuit Breakers
– Bulkheads
– Distributed Log Correlation

● Separate high-volume/low consistency areas
from important areas

● Split your whole problem in distinct parts with
their own Database (Conway's Law)
– Those parts don't need to be 'micro' though!

Application Layering

● Also works with Monoliths

JavaEE vs SOA vs MicroService vs ...

● Is this really a 'vs'?
● Or is is more like fitting parts?

Questions?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19

