
Serverless Microservices
Are The New Black

Lorna Mitchell, IBM

Smile!

Developer Advocate, Openwhisk enthusiast and occasional contributor

Serverless
FaaS: Functions as a Service
•write a function (many languages supported)
• deploy it to the cloud (Lambda, Cloud Functions, etc)
• only pay while the function is running (charged per GBsec)
• your platform scales on demand

@lornajane

Revolutionary. Really. Low barrier to entry (tech, risk and cost)

Modular like modern arch

Radical cost model

Hype now because depends on K8s

When To Go Serverless
• To create a small, scalable application (focussed API,

microservices)
• For occasional server needs (contact form on static site)
• To provide compute power (processing quantities of data)
• To move heavy lifting off web platform (classic example: PDF

generation)

@lornajane

Any time capacity planning is hard or server would be idle

FaaS + HTTP =
Microservices!

@lornajane

TADA FANFARE

Microservices
Microservices are:
• small and modular
• loosely coupled
• independently developed and deployed
• great for building components
• decentralised

... they are basically small HTTP APIs

@lornajane

They might be managed by different teams

Can replace individual elements more easily: interfaces are well defined

Keyword: independent

Microservice Design Points
I prefer RESTful-ish APIs
• Status codes are important
•Headers are for metadata
•URLs and verbs together define what happens
• All endpoints are stateless
• SSL is required

@lornajane

Lorna's Plans Service
Keep a list of my travel plans, with locations and dates.

Use a serverless platform (IBM Cloud Functions) and
PostgreSQL
GET /plans list all plans
GET /plans/42 show one plan
POST /plans create a new plan
DELETE /plans/42 delete a plan

@lornajane

Examples use hosted platform because ... I wanted to deploy it

... use an API gateway between world and functions

Lorna's Plans Service

@lornajane

API Gateway goes in front, world is off to the left

Each service then is an endpoint (URL + verb). These need a few ingredients ...

Creating the Microservices

@lornajane

Endpoint needs the function, plus the routing (think express/flask)

Creating the Microservices

@lornajane

Let's look at each piece in turn, starting with function code ...

Writing Serverless Functions
• Small, self-contained units of functionality
• Run on-demand in response to an event
• Incoming parameters can include
• event information
• parameters set at deploy time
• connection info for other services

@lornajane

Make Plans: the Code
 1 const pgp = require('pg-promise')();
 2 function main(params) {
 3 var postgres_url = params['__bx_creds']['compose-for-postgresql']['uri'];
 4 var base_url = params['__ow_headers']['x-forwarded-url'];
 5 return new Promise(function(resolve, reject) {
 6 db = pgp(postgres_url, []);
 7
 8 db.one("INSERT INTO plans (location, travel_date) VALUES
 9 ($1, $2) RETURNING plan_id",
10 [location, travel_date])
11 .then(function(data) {
12 var redirect_to = base_url + "/" + data.plan_id;
13 resolve({headers: {"Location": redirect_to},
14 statusCode: 303})
15 })

@lornajane

Screen full of code but this is pretty much all of it (Github link to share later)

Prepare to Deploy: package
In OpenWhisk, there are "packages". These let us:

• group actions together
• add parameters to a package that will be available to all

actions

From the deployment script, the line to create plans-api:

ibmcloud wsk package update plans-api

@lornajane

If not exists, update means create

Prepare to Deploy: services
The function needs to connect to the database. We can bind the
database to the package to achieve this:

ibmcloud wsk service bind compose-for-postgresql plans-api

@lornajane

Can also specify WHICH database and WHICH creds to use with additional switches

This binds your first postgres with the first creds it finds to the package or action you named

Prepare to Deploy: libraries
To include extra libraries, we can:
• create package.json and run npm install
• zip up index.js and node_modules into a zip file
• deploy the zip file, and include runtime instructions

cd write-plan

zip -rq write-plan.zip index.js node_modules

@lornajane

index.js and node_modules need to be top-level

Make Plans: Deploy
We're ready! Push the action to the cloud:

ibmcloud wsk action update --kind nodejs:8 --web raw \
plans-api/write-plan write-plan.zip

@lornajane

Specify the runtime to use, various langs supported

Web = raw gives NO processing which I prefer for variable safety. PHP, registerglobals, etc

Make Plans: API Gateway
To have this action repsond to our HTTP request, set up the API
Gateway:
• create the API
• set up the path, verb and action to link together

ibmcloud wsk api create /plans GET plans-api/get-plans \
--response-type http

@lornajane

This outputs the non-pretty URL we'll use - copy it

Custom domains can also be used, I'm not vain enough to set it up though!

Creating the Microservices

@lornajane

We made it! All the pieces in place: we can call it

Calling The Endpoint
Quick example with cURL (other clients available):

$ curl -L -H "Content-Type: application/json" \
 https://service.eu.apiconnect.ibmcloud.com/.../plans \
 -d '{"location": "Turin", "travel_date": "2018-04-11"}'

{
 "plans": [{
 "plan_id": 3,
 "travel_date": "2018-04-11T00:00:00.000Z",
 "location": "Turin"
 }]
}

@lornajane

Use -L to follow location header to new record

303 see other

Microservices: Security

@lornajane

Important, bit late since we already called the endpoint!

Security
In web console:
https://console.bluemix.net/openwhisk/apimanagement

@lornajane

https://console.bluemix.net/openwhisk/apimanagement
These settings are on the Definition tab for an individual API

Security
In web console:
https://console.bluemix.net/openwhisk/apimanagement

@lornajane

https://console.bluemix.net/openwhisk/apimanagement
These settings are on the Definition tab for an individual API

Project Structure
Many possible approaches, this is mine:
.
├── deploy.sh
├── get-plans
│ ├── index.js
│ ├── node_modules
│ ├── package-lock.json
│ └── package.json
└── write-plan
 ├── index.js
 ├── node_modules
 ├── package-lock.json
 └── package.json

@lornajane

Zip files get created during deployment

This allows a root index.js for each action

Deployment
Using https://travis-ci.com/
• deploy with a script
• script downloads ibmcloud tool and cloud-functions plugin
• set an API key as an environment variable
• then run commands (see deploy.sh in GitHub project)

@lornajane

https://travis-ci.com/

Serverless Microservices

@lornajane

Serverless
Ideal for working with many small parts

Apache OpenWhisk paired with API Gateway: perfect candidate
for microservices

@lornajane

API Gateway for routing and security

Microservices
Service Oriented Architecture is alive and well
•microservices expose endpoints
• they share reusable components
• specific components guard access to services/datastores
• each component can be separately developed, tested and

deployed

@lornajane

Resources
• Code: https://github.com/lornajane/plans-microservice
• Apache OpenWhisk: http://openwhisk.apache.org
• IBM Cloud Functions: https://www.ibm.com/cloud/functions
•My blog: https://lornajane.net

@lornajane

https://github.com/lornajane/plans-microservice
http://openwhisk.apache.org
https://www.ibm.com/cloud/functions
https://lornajane.net

	Serverless
	When To Go Serverless
	FaaS + HTTP = Microservices!
	Microservices
	Microservice Design Points
	Lorna's Plans Service
	Lorna's Plans Service
	Creating the Microservices
	Creating the Microservices
	Writing Serverless Functions
	Make Plans: the Code
	Prepare to Deploy: package
	Prepare to Deploy: services
	Prepare to Deploy: libraries
	Make Plans: Deploy
	Make Plans: API Gateway
	Creating the Microservices
	Calling The Endpoint
	Microservices: Security
	Security
	Security
	Project Structure
	Deployment
	Serverless Microservices
	Serverless
	Microservices
	Resources

